set_ssvs {bvhar} | R Documentation |
Stochastic Search Variable Selection (SSVS) Hyperparameter for Coefficients Matrix and Cholesky Factor
Description
Set SSVS hyperparameters for VAR or VHAR coefficient matrix and Cholesky factor.
Usage
set_ssvs(
coef_spike = 0.1,
coef_slab = 5,
coef_mixture = 0.5,
coef_s1 = 1,
coef_s2 = 1,
mean_non = 0,
sd_non = 0.1,
shape = 0.01,
rate = 0.01,
chol_spike = 0.1,
chol_slab = 5,
chol_mixture = 0.5,
chol_s1 = 1,
chol_s2 = 1
)
## S3 method for class 'ssvsinput'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'ssvsinput'
knit_print(x, ...)
Arguments
coef_spike |
Standard deviance for Spike normal distribution (See Details). |
coef_slab |
Standard deviance for Slab normal distribution (See Details). |
coef_mixture |
Bernoulli parameter for sparsity proportion (See Details). |
coef_s1 |
First shape of coefficients prior beta distribution |
coef_s2 |
Second shape of coefficients prior beta distribution |
mean_non |
Prior mean of unrestricted coefficients |
sd_non |
Standard deviance for unrestricted coefficients |
shape |
Gamma shape parameters for precision matrix (See Details). |
rate |
Gamma rate parameters for precision matrix (See Details). |
chol_spike |
Standard deviance for Spike normal distribution, in the cholesky factor (See Details). |
chol_slab |
Standard deviance for Slab normal distribution, in the cholesky factor (See Details). |
chol_mixture |
Bernoulli parameter for sparsity proportion, in the cholesky factor (See Details). |
chol_s1 |
First shape of cholesky factor prior beta distribution |
chol_s2 |
Second shape of cholesky factor prior beta distribution |
x |
|
digits |
digit option to print |
... |
not used |
Details
Let \alpha
be the vectorized coefficient, \alpha = vec(A)
.
Spike-slab prior is given using two normal distributions.
\alpha_j \mid \gamma_j \sim (1 - \gamma_j) N(0, \tau_{0j}^2) + \gamma_j N(0, \tau_{1j}^2)
As spike-slab prior itself suggests, set \tau_{0j}
small (point mass at zero: spike distribution)
and set \tau_{1j}
large (symmetric by zero: slab distribution).
\gamma_j
is the proportion of the nonzero coefficients and it follows
\gamma_j \sim Bernoulli(p_j)
-
coef_spike
:\tau_{0j}
-
coef_slab
:\tau_{1j}
-
coef_mixture
:p_j
-
j = 1, \ldots, mk
: vectorized format corresponding to coefficient matrix If one value is provided, model function will read it by replicated value.
-
coef_non
: vectorized constant term is given prior Normal distribution with variancecI
. Here,coef_non
is\sqrt{c}
.
Next for precision matrix \Sigma_e^{-1}
, SSVS applies Cholesky decomposition.
\Sigma_e^{-1} = \Psi \Psi^T
where \Psi = \{\psi_{ij}\}
is upper triangular.
Diagonal components follow the gamma distribution.
\psi_{jj}^2 \sim Gamma(shape = a_j, rate = b_j)
For each row of off-diagonal (upper-triangular) components, we apply spike-slab prior again.
\psi_{ij} \mid w_{ij} \sim (1 - w_{ij}) N(0, \kappa_{0,ij}^2) + w_{ij} N(0, \kappa_{1,ij}^2)
w_{ij} \sim Bernoulli(q_{ij})
-
shape
:a_j
-
rate
:b_j
-
chol_spike
:\kappa_{0,ij}
-
chol_slab
:\kappa_{1,ij}
-
chol_mixture
:q_{ij}
-
j = 1, \ldots, mk
: vectorized format corresponding to coefficient matrix -
i = 1, \ldots, j - 1
andj = 2, \ldots, m
:\eta = (\psi_{12}, \psi_{13}, \psi_{23}, \psi_{14}, \ldots, \psi_{34}, \ldots, \psi_{1m}, \ldots, \psi_{m - 1, m})^T
-
chol_
arguments can be one value for replication, vector, or upper triangular matrix.
Value
ssvsinput
object
References
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881–889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267–358.