mase {bvhar} | R Documentation |
Evaluate the Model Based on MASE (Mean Absolute Scaled Error)
Description
This function computes MASE given prediction result versus evaluation set.
Usage
mase(x, y, ...)
## S3 method for class 'predbvhar'
mase(x, y, ...)
## S3 method for class 'bvharcv'
mase(x, y, ...)
Arguments
x |
Forecasting object |
y |
Test data to be compared. should be the same format with the train data. |
... |
not used |
Details
Let e_t = y_t - \hat{y}_t
.
Scaled error is defined by
q_t = \frac{e_t}{\sum_{i = 2}^{n} \lvert Y_i - Y_{i - 1} \rvert / (n - 1)}
so that the error can be free of the data scale. Then
MASE = mean(\lvert q_t \rvert)
Here, Y_i
are the points in the sample, i.e. errors are scaled by the in-sample mean absolute error (mean(\lvert e_t \rvert)
) from the naive random walk forecasting.
Value
MASE vector corresponding to each variable.
References
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.
[Package bvhar version 2.0.1 Index]