logLik.varlse {bvhar}R Documentation

Extract Log-Likelihood of Multivariate Time Series Model

Description

Compute log-likelihood function value of VAR(p), VHAR, BVAR(p), and BVHAR

Usage

## S3 method for class 'varlse'
logLik(object, ...)

## S3 method for class 'vharlse'
logLik(object, ...)

## S3 method for class 'bvarmn'
logLik(object, ...)

## S3 method for class 'bvarflat'
logLik(object, ...)

## S3 method for class 'bvharmn'
logLik(object, ...)

Arguments

object

Model fit

...

not used

Details

Consider the response matrix Y_0. Let n be the total number of sample, let m be the dimension of the time series, let p be the order of the model, and let s = n - p. Likelihood of VAR(p) has

Y_0 \mid B, \Sigma_e \sim MN(X_0 B, I_s, \Sigma_e)

where X_0 is the design matrix, and MN is matrix normal distribution.

Then log-likelihood of vector autoregressive model family is specified by

\log p(Y_0 \mid B, \Sigma_e) = - \frac{sm}{2} \log 2\pi - \frac{s}{2} \log \det \Sigma_e - \frac{1}{2} tr( (Y_0 - X_0 B) \Sigma_e^{-1} (Y_0 - X_0 B)^T )

In addition, recall that the OLS estimator for the matrix coefficient matrix is the same as MLE under the Gaussian assumption. MLE for \Sigma_e has different denominator, s.

\hat{B} = \hat{B}^{LS} = \hat{B}^{ML} = (X_0^T X_0)^{-1} X_0^T Y_0

\hat\Sigma_e = \frac{1}{s - k} (Y_0 - X_0 \hat{B})^T (Y_0 - X_0 \hat{B})

\tilde\Sigma_e = \frac{1}{s} (Y_0 - X_0 \hat{B})^T (Y_0 - X_0 \hat{B}) = \frac{s - k}{s} \hat\Sigma_e

In case of VHAR, just consider the linear relationship.

While frequentist models use OLS and MLE for coefficient and covariance matrices, Bayesian models implement posterior means.

Value

A logLik object.

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174–196.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).

See Also

vhar_lm()

bvar_minnesota()

bvar_flat()

bvhar_minnesota()


[Package bvhar version 2.0.1 Index]