confusion {bvhar} | R Documentation |
Evaluate the Sparsity Estimation Based on Confusion Matrix
Description
This function computes FDR (false discovery rate) and FNR (false negative rate) for sparse element of the true coefficients given threshold.
Usage
confusion(x, y, ...)
## S3 method for class 'summary.bvharsp'
confusion(x, y, truth_thr = 0, ...)
Arguments
x |
|
y |
True inclusion variable. |
... |
not used |
truth_thr |
Threshold value when using non-sparse true coefficient matrix. By default, |
Details
When using this function, the true coefficient matrix \Phi
should be sparse.
In this confusion matrix, positive (0) means sparsity. FP is false positive, and TP is true positive. FN is false negative, and FN is false negative.
Value
Confusion table as following.
True-estimate | Positive (0) | Negative (1) |
Positive (0) | TP | FN |
Negative (1) | FP | TN |
References
Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global–local shrinkage priors. Journal of Multivariate Analysis, 167, 157–170.
[Package bvhar version 2.0.1 Index]