conf_fdr {bvhar} | R Documentation |
Evaluate the Sparsity Estimation Based on FDR
Description
This function computes false discovery rate (FDR) for sparse element of the true coefficients given threshold.
Usage
conf_fdr(x, y, ...)
## S3 method for class 'summary.bvharsp'
conf_fdr(x, y, truth_thr = 0, ...)
Arguments
x |
|
y |
True inclusion variable. |
... |
not used |
truth_thr |
Threshold value when using non-sparse true coefficient matrix. By default, |
Details
When using this function, the true coefficient matrix \Phi
should be sparse.
False discovery rate (FDR) is computed by
FDR = \frac{FP}{TP + FP}
where TP is true positive, and FP is false positive.
Value
FDR value in confusion table
References
Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global–local shrinkage priors. Journal of Multivariate Analysis, 167, 157–170.
See Also
[Package bvhar version 2.0.1 Index]