choose_ssvs {bvhar} | R Documentation |
Choose the Hyperparameters Set of SSVS-VAR using a Default Semiautomatic Approach
Description
This function chooses (\tau_{0i}, \tau_{1i})
and (\kappa_{0i}, \kappa_{1i})
using a default semiautomatic approach.
Usage
choose_ssvs(
y,
ord,
type = c("VAR", "VHAR"),
param = c(0.1, 10),
include_mean = TRUE,
gamma_param = c(0.01, 0.01),
mean_non = 0,
sd_non = 0.1
)
Arguments
y |
Time series data of which columns indicate the variables. |
ord |
Order for VAR or VHAR. |
type |
Model type (Default: |
param |
Preselected constants |
include_mean |
Add constant term (Default: |
gamma_param |
Parameters (shape, rate) for Gamma distribution. This is for the output. |
mean_non |
Prior mean of unrestricted coefficients. This is for the output. |
sd_non |
Standard deviance of unrestricted coefficients. This is for the output. |
Details
Instead of using subjective values of (\tau_{0i}, \tau_{1i})
, we can use
\tau_{ki} = c_k \hat{VAR(OLS)}
It must be c_0 << c_1
.
In case of (\omega_{0ij}, \omega_{1ij})
,
\omega_{kij} = c_k = \hat{VAR(OLS)}
similarly.
Value
ssvsinput
object
References
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881–889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267–358.