bvhar_ssvs {bvhar}R Documentation

Fitting Bayesian VHAR of SSVS Prior

Description

[Experimental] This function fits BVAR(p) with stochastic search variable selection (SSVS) prior.

Usage

bvhar_ssvs(
  y,
  har = c(5, 22),
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = choose_ssvs(y = y, ord = har, type = "VHAR", param = c(0.1, 10),
    include_mean = include_mean, gamma_param = c(0.01, 0.01), mean_non = 0, sd_non = 0.1),
  init_spec = init_ssvs(type = "auto"),
  include_mean = TRUE,
  minnesota = c("no", "short", "longrun"),
  verbose = FALSE,
  num_thread = 1
)

## S3 method for class 'bvharssvs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'bvharssvs'
knit_print(x, ...)

Arguments

y

Time series data of which columns indicate the variables

har

Numeric vector for weekly and monthly order. By default, c(5, 22).

num_chains

Number of MCMC chains

num_iter

MCMC iteration number

num_burn

Number of warm-up (burn-in). Half of the iteration is the default choice.

thinning

Thinning every thinning-th iteration

bayes_spec

A SSVS model specification by set_ssvs(). By default, use a default semiautomatic approach choose_ssvs().

init_spec

SSVS initialization specification by init_ssvs(). By default, use OLS for coefficient and cholesky factor while 1 for dummies.

include_mean

Add constant term (Default: TRUE) or not (FALSE)

minnesota

Apply cross-variable shrinkage structure (Minnesota-way). Two type: "short" type and "longrun" type. By default, "no".

verbose

Print the progress bar in the console. By default, FALSE.

num_thread

[Experimental] Number of threads

x

bvharssvs object

digits

digit option to print

...

not used

Details

SSVS prior gives prior to parameters \alpha = vec(A) (VAR coefficient) and \Sigma_e^{-1} = \Psi \Psi^T (residual covariance).

\alpha_j \mid \gamma_j \sim (1 - \gamma_j) N(0, \kappa_{0j}^2) + \gamma_j N(0, \kappa_{1j}^2)

\gamma_j \sim Bernoulli(q_j)

and for upper triangular matrix \Psi,

\psi_{jj}^2 \sim Gamma(shape = a_j, rate = b_j)

\psi_{ij} \mid w_{ij} \sim (1 - w_{ij}) N(0, \kappa_{0,ij}^2) + w_{ij} N(0, \kappa_{1,ij}^2)

w_{ij} \sim Bernoulli(q_{ij})

Gibbs sampler is used for the estimation. See ssvs_bvar_algo how it works.

Value

bvhar_ssvs returns an object named bvharssvs class. It is a list with the following components:

phi_record

MCMC trace for vectorized coefficients (phi \phi) with posterior::draws_df format.

eta_record

MCMC trace for upper triangular element of cholesky factor (eta \eta) with posterior::draws_df format.

psi_record

MCMC trace for diagonal element of cholesky factor (psi \psi) with posterior::draws_df format.

omega_record

MCMC trace for indicator variable for eta (omega \omega) with posterior::draws_df format.

gamma_record

MCMC trace for indicator variable for alpha (gamma \gamma) with posterior::draws_df format.

chol_record

MCMC trace for cholesky factor matrix \Psi with list format.

ols_coef

OLS estimates for VAR coefficients.

ols_cholesky

OLS estimates for cholesky factor

coefficients

Posterior mean of VAR coefficients.

omega_posterior

Posterior mean of omega

pip

Posterior inclusion probability

param

posterior::draws_df with every variable: alpha, eta, psi, omega, and gamma

chol_posterior

Posterior mean of cholesky factor matrix

covmat

Posterior mean of covariance matrix

df

Numer of Coefficients: ⁠3m + 1⁠ or ⁠3m⁠

p

3 (The number of terms. It contains this element for usage in other functions.)

week

Order for weekly term

month

Order for monthly term

m

Dimension of the data

obs

Sample size used when training = totobs - p

totobs

Total number of the observation

call

Matched call

process

Description of the model, e.g. "VHAR_SSVS"

type

include constant term ("const") or not ("none")

spec

SSVS specification defined by set_ssvs()

init

Initial specification defined by init_ssvs()

iter

Total iterations

burn

Burn-in

thin

Thinning

chain

The numer of chains

HARtrans

VHAR linear transformation matrix

y0

Y_0

design

X_0

y

Raw input

References

Kim, Y. G., and Baek, C. (2023). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation.

Kim, Y. G., and Baek, C. (n.d.). Working paper.

See Also


[Package bvhar version 2.0.1 Index]