bvhar_horseshoe {bvhar} | R Documentation |
Fitting Bayesian VHAR of Horseshoe Prior
Description
This function fits VHAR with horseshoe prior.
Usage
bvhar_horseshoe(
y,
har = c(5, 22),
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_horseshoe(),
include_mean = TRUE,
minnesota = c("no", "short", "longrun"),
algo = c("block", "gibbs"),
verbose = FALSE,
num_thread = 1
)
## S3 method for class 'bvharhs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvharhs'
knit_print(x, ...)
Arguments
y |
Time series data of which columns indicate the variables |
har |
Numeric vector for weekly and monthly order. By default, |
num_chains |
Number of MCMC chains |
num_iter |
MCMC iteration number |
num_burn |
Number of burn-in (warm-up). Half of the iteration is the default choice. |
thinning |
Thinning every thinning-th iteration |
bayes_spec |
Horseshoe initialization specification by |
include_mean |
Add constant term (Default: |
minnesota |
Minnesota type |
algo |
Ordinary gibbs sampling ( |
verbose |
Print the progress bar in the console. By default, |
num_thread |
|
x |
|
digits |
digit option to print |
... |
not used |
Value
bvhar_horseshoe
returns an object named bvarhs
class.
It is a list with the following components:
- phi_record
MCMC trace for vectorized coefficients (alpha
\phi
) with posterior::draws_df format.- lambda_record
MCMC trace for local shrinkage level (lambda
\lambda
) with posterior::draws_df format.- tau_record
MCMC trace for global shrinkage level (tau
\tau
) with posterior::draws_df format.- psi_record
MCMC trace for precision matrix (psi
\Psi
) with list format.- chain
The numer of chains
- coefficients
Posterior mean of VHAR coefficients.
- psi_posterior
Posterior mean of precision matrix
\Psi
- covmat
Posterior mean of covariance matrix
- omega_record
MCMC trace for diagonal element of
\Psi
(omega) with posterior::draws_df format.- eta_record
MCMC trace for upper triangular element of
\Psi
(eta) with posterior::draws_df format.- param
posterior::draws_df with every variable: alpha, lambda, tau, omega, and eta
- df
Numer of Coefficients:
3m + 1
or3m
- p
3 (The number of terms. It contains this element for usage in other functions.)
- m
Dimension of the data
- obs
Sample size used when training =
totobs
-p
- totobs
Total number of the observation
- call
Matched call
- process
Description of the model, e.g.
"VHAR_Horseshoe"
- type
include constant term (
"const"
) or not ("none"
)- algo
Usual Gibbs sampling (
"gibbs"
) or fast sampling ("fast"
)- spec
Horseshoe specification defined by
set_horseshoe()
- iter
Total iterations
- burn
Burn-in
- thin
Thinning
- HARtrans
VHAR linear transformation matrix
- y0
Y_0
- design
X_0
- y
Raw input
References
Kim, Y. G., and Baek, C. (2023). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation.
Kim, Y. G., and Baek, C. (n.d.). Working paper.