bvar_ssvs {bvhar} | R Documentation |
Fitting Bayesian VAR(p) of SSVS Prior
Description
This function fits BVAR(p) with stochastic search variable selection (SSVS) prior.
Usage
bvar_ssvs(
y,
p,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = choose_ssvs(y = y, ord = p, type = "VAR", param = c(0.1, 10), include_mean
= include_mean, gamma_param = c(0.01, 0.01), mean_non = 0, sd_non = 0.1),
init_spec = init_ssvs(type = "auto"),
include_mean = TRUE,
minnesota = FALSE,
verbose = FALSE,
num_thread = 1
)
## S3 method for class 'bvarssvs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarssvs'
knit_print(x, ...)
Arguments
y |
Time series data of which columns indicate the variables |
p |
VAR lag |
num_chains |
Number of MCMC chains |
num_iter |
MCMC iteration number |
num_burn |
Number of burn-in (warm-up). Half of the iteration is the default choice. |
thinning |
Thinning every thinning-th iteration |
bayes_spec |
A SSVS model specification by |
init_spec |
SSVS initialization specification by |
include_mean |
Add constant term (Default: |
minnesota |
Apply cross-variable shrinkage structure (Minnesota-way). By default, |
verbose |
Print the progress bar in the console. By default, |
num_thread |
|
x |
|
digits |
digit option to print |
... |
not used |
Details
SSVS prior gives prior to parameters (VAR coefficient) and
(residual covariance).
and for upper triangular matrix ,
Gibbs sampler is used for the estimation. See ssvs_bvar_algo how it works.
Value
bvar_ssvs
returns an object named bvarssvs
class.
It is a list with the following components:
- alpha_record
MCMC trace for vectorized coefficients (alpha
) with posterior::draws_df format.
- eta_record
MCMC trace for upper triangular element of cholesky factor (eta
) with posterior::draws_df format.
- psi_record
MCMC trace for diagonal element of cholesky factor (psi
) with posterior::draws_df format.
- omega_record
MCMC trace for indicator variable for
(omega
) with posterior::draws_df format.
- gamma_record
MCMC trace for indicator variable for
(gamma
) with posterior::draws_df format.
- chol_record
MCMC trace for cholesky factor matrix
with list format.
- ols_coef
OLS estimates for VAR coefficients.
- ols_cholesky
OLS estimates for cholesky factor
- coefficients
Posterior mean of VAR coefficients.
- omega_posterior
Posterior mean of omega
- pip
Posterior inclusion probability
- param
posterior::draws_df with every variable: alpha, eta, psi, omega, and gamma
- chol_posterior
Posterior mean of cholesky factor matrix
- covmat
Posterior mean of covariance matrix
- df
Numer of Coefficients:
mp + 1
ormp
- p
Lag of VAR
- m
Dimension of the data
- obs
Sample size used when training =
totobs
-p
- totobs
Total number of the observation
- call
Matched call
- process
Description of the model, e.g.
"VAR_SSVS"
- type
include constant term (
"const"
) or not ("none"
)- spec
SSVS specification defined by
set_ssvs()
- init
Initial specification defined by
init_ssvs()
- iter
Total iterations
- burn
Burn-in
- thin
Thinning
- chain
The numer of chains
- y0
- design
- y
Raw input
References
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881–889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267–358.
See Also
Vectorization formulation var_vec_formulation
Gibbs sampler algorithm ssvs_bvar_algo