bvar_flat {bvhar}R Documentation

Fitting Bayesian VAR(p) of Flat Prior

Description

This function fits BVAR(p) with flat prior.

Usage

bvar_flat(y, p, bayes_spec = set_bvar_flat(), include_mean = TRUE)

## S3 method for class 'bvarflat'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'bvarflat'
knit_print(x, ...)

Arguments

y

Time series data of which columns indicate the variables

p

VAR lag

bayes_spec

A BVAR model specification by set_bvar_flat().

include_mean

Add constant term (Default: TRUE) or not (FALSE)

x

bvarflat object

digits

digit option to print

...

not used

Details

Ghosh et al. (2018) gives flat prior for residual matrix in BVAR.

Under this setting, there are many models such as hierarchical or non-hierarchical. This function chooses the most simple non-hierarchical matrix normal prior in Section 3.1.

A \mid \Sigma_e \sim MN(0, U^{-1}, \Sigma_e)

where U: precision matrix (MN: matrix normal).

p (\Sigma_e) \propto 1

Value

bvar_flat() returns an object bvarflat class. It is a list with the following components:

coefficients

Posterior Mean matrix of Matrix Normal distribution

fitted.values

Fitted values

residuals

Residuals

mn_prec

Posterior precision matrix of Matrix Normal distribution

iw_scale

Posterior scale matrix of posterior inverse-wishart distribution

iw_shape

Posterior shape of inverse-wishart distribution

df

Numer of Coefficients: mp + 1 or mp

p

Lag of VAR

m

Dimension of the time series

obs

Sample size used when training = totobs - p

totobs

Total number of the observation

process

Process string in the bayes_spec: "BVAR_Flat"

spec

Model specification (bvharspec)

type

include constant term ("const") or not ("none")

call

Matched call

prior_mean

Prior mean matrix of Matrix Normal distribution: zero matrix

prior_precision

Prior precision matrix of Matrix Normal distribution: U^{-1}

y0

Y_0

design

X_0

y

Raw input (matrix)

References

Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

See Also


[Package bvhar version 2.0.1 Index]