bvar_flat {bvhar} | R Documentation |
Fitting Bayesian VAR(p) of Flat Prior
Description
This function fits BVAR(p) with flat prior.
Usage
bvar_flat(y, p, bayes_spec = set_bvar_flat(), include_mean = TRUE)
## S3 method for class 'bvarflat'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarflat'
knit_print(x, ...)
Arguments
y |
Time series data of which columns indicate the variables |
p |
VAR lag |
bayes_spec |
A BVAR model specification by |
include_mean |
Add constant term (Default: |
x |
|
digits |
digit option to print |
... |
not used |
Details
Ghosh et al. (2018) gives flat prior for residual matrix in BVAR.
Under this setting, there are many models such as hierarchical or non-hierarchical. This function chooses the most simple non-hierarchical matrix normal prior in Section 3.1.
A \mid \Sigma_e \sim MN(0, U^{-1}, \Sigma_e)
where U: precision matrix (MN: matrix normal).
p (\Sigma_e) \propto 1
Value
bvar_flat()
returns an object bvarflat
class.
It is a list with the following components:
- coefficients
Posterior Mean matrix of Matrix Normal distribution
- fitted.values
Fitted values
- residuals
Residuals
- mn_prec
Posterior precision matrix of Matrix Normal distribution
- iw_scale
Posterior scale matrix of posterior inverse-wishart distribution
- iw_shape
Posterior shape of inverse-wishart distribution
- df
Numer of Coefficients: mp + 1 or mp
- p
Lag of VAR
- m
Dimension of the time series
- obs
Sample size used when training =
totobs
-p
- totobs
Total number of the observation
- process
Process string in the
bayes_spec
:"BVAR_Flat"
- spec
Model specification (
bvharspec
)- type
include constant term (
"const"
) or not ("none"
)- call
Matched call
- prior_mean
Prior mean matrix of Matrix Normal distribution: zero matrix
- prior_precision
Prior precision matrix of Matrix Normal distribution:
U^{-1}
- y0
Y_0
- design
X_0
- y
Raw input (
matrix
)
References
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
See Also
-
set_bvar_flat()
to specify the hyperparameters of BVAR flat prior. -
coef.bvarflat()
,residuals.bvarflat()
, andfitted.bvarflat()
-
predict.bvarflat()
to forecast the BVHAR process