do_bootstrap {bunching} | R Documentation |
Bootstrap
Description
Estimate bunching on bootstrapped samples, using residual-based bootstrapping with replacement.
Usage
do_bootstrap(
zstar,
binwidth,
firstpass_prep,
residuals,
n_boot = 100,
correct = TRUE,
correct_iter_max = 200,
notch = FALSE,
zD_bin = NA,
seed = NA
)
Arguments
zstar |
a numeric value for the the bunching point. |
binwidth |
a numeric value for the width of each bin. |
firstpass_prep |
(binned) data that includes all variables necessary for fitting the model. |
residuals |
residuals from (first pass) fitted bunching model. |
n_boot |
number of bootstrapped iterations. Default is 100. |
correct |
implements correction for integration constraint. Default is TRUE. |
correct_iter_max |
maximum iterations for integration constraint correction. Default is 200. |
notch |
whether analysis is for a kink or notch. Default is FALSE (kink). |
zD_bin |
the bin marking the upper end of the dominated region (notch case). |
seed |
a numeric value for bootstrap seed (random re-sampling of residuals). Default is NA. |
Value
do_bootstrap
returns a list with the following bootstrapped estimates:
b_vector |
A vector with the bootstrapped normalized excess mass estimates. |
b_sd |
The standard deviation of the bootstrapped b_vector. |
B_vector |
A vector with the bootstrapped excess mass estimates (not normalized). |
B_sd |
The standard deviation of the bootstrapped B_vector. |
marginal_buncher_vector |
A vector with the bootstrapped estimates of the location (z value) of the marginal buncher. |
marginal_buncher_sd |
The standard deviation of the bootstrapped marginal_buncher_vector. |
alpha_vector |
A vector with the bootstrapped estimates of the fraction of bunchers in the dominated region (only in notch case). |
alpha_vector_sd |
The standard deviation of the bootstrapped alpha_vector. |
See Also
Examples
data(bunching_data)
binned_data <- bin_data(z_vector = bunching_data$kink, zstar = 10000,
binwidth = 50, bins_l = 20, bins_r = 20)
prepped_data <- prep_data_for_fit(binned_data, zstar = 10000, binwidth = 50,
bins_l = 20, bins_r = 20, poly = 4)
firstpass <- fit_bunching(prepped_data$data_binned,
prepped_data$model_formula,
binwidth = 50)
residuals_for_boot <- fit_bunching(prepped_data$data_binned,
prepped_data$model_formula,
binwidth = 50)$residuals
boot_results <- do_bootstrap(zstar = 10000, binwidth = 50,
firstpass_prep = prepped_data,
residuals = residuals_for_boot,
seed = 1)
boot_results$b_sd