mlgp {bulletcp} | R Documentation |
Impute missing data.
Description
This function performs maximum likelihood estimation to estimate the variance parameters in a Gaussian process with a squared exponential covariance function. These parameters could then be used in the Gaussian process used for imputation.
Usage
mlgp(y, x, tol = 1e-06)
Arguments
y |
Numeric y vector of response values. |
x |
Numeric x vector of locations used for the covariance function. |
tol |
Tolerance level for the maximum likelihood procedure to fit the Gaussian process. |
Value
Standard optim output. The first optimized parameter value is the standard deviation the second is the length scale.
Examples
# Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{
x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))
}
fake_groove <- sim_groove()
fake_groove <- fake_groove[sample.int(n = nrow(fake_groove),
size = round(0.8 * nrow(fake_groove)),
replace = FALSE),]
plot(fake_groove$x, fake_groove$y)
# estimate the MLE's
mles <- mlgp(y = fake_groove$y, x = fake_groove$x)
[Package bulletcp version 1.0.0 Index]