verify_identification.PosteriorBSVAR {bsvars} | R Documentation |
Verifies identification through heteroskedasticity or non-normality of of structural shocks
Description
Displays information that the model is homoskedastic and with normal shocks.
Usage
## S3 method for class 'PosteriorBSVAR'
verify_identification(posterior)
Arguments
posterior |
the estimation outcome obtained using |
Value
Nothing. Just displays a message.
Author(s)
Tomasz Woźniak wozniak.tom@pm.me
References
Lütkepohl, H., and Woźniak, T., (2020) Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity. Journal of Economic Dynamics and Control 113, 103862, doi:10.1016/j.jedc.2020.103862.
Lütkepohl, H., Shang, F., Uzeda, L., and Woźniak, T. (2024) Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference. University of Melbourne Working Paper, 1–57, doi:10.48550/arXiv.2404.11057.
See Also
verify_identification.PosteriorBSVAR
, verify_identification.PosteriorBSVARSV
,
verify_identification.PosteriorBSVARMIX
, verify_identification.PosteriorBSVARMSH
,
verify_identification.PosteriorBSVART
Examples
# simple workflow
############################################################
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
# verify heteroskedasticity
sddr = verify_identification(posterior)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new(p = 1) |>
estimate(S = 10) |>
verify_identification() -> sddr