summary.SDDRidMSH {bsvars} | R Documentation |
Provides summary of verifying homoskedasticity
Description
Provides summary of the Savage-Dickey density ratios for verification of structural shocks homoskedasticity. The outcomes can be used to make probabilistic statements about identification through heteroskedasticity closely following ideas by Lütkepohl& Woźniak (2020).
Usage
## S3 method for class 'SDDRidMSH'
summary(object, ...)
Arguments
object |
an object of class |
... |
additional arguments affecting the summary produced. |
Value
A table reporting the logarithm of Bayes factors of homoskedastic to
heteroskedastic posterior odds "log(SDDR)"
for each structural shock,
their numerical standard errors "NSE"
, and the implied posterior
probability of the homoskedasticity and heteroskedasticity hypothesis,
"Pr[homoskedasticity|data]"
and "Pr[heteroskedasticity|data]"
respectively.
Author(s)
Tomasz Woźniak wozniak.tom@pm.me
References
Lütkepohl, H., and Woźniak, T., (2020) Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity. Journal of Economic Dynamics and Control 113, 103862, doi:10.1016/j.jedc.2020.103862.
See Also
verify_identification.PosteriorBSVARMSH
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_msh$new(us_fiscal_lsuw, M = 2)
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
# verify heteroskedasticity
sddr = verify_identification(posterior)
summary(sddr)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_msh$new(M = 2) |>
estimate(S = 10) |>
verify_identification() |>
summary() -> sddr_summary