| summary.SDDRidMSH {bsvars} | R Documentation |
Provides summary of verifying homoskedasticity
Description
Provides summary of the Savage-Dickey density ratios for verification of structural shocks homoskedasticity. The outcomes can be used to make probabilistic statements about identification through heteroskedasticity closely following ideas by Lütkepohl& Woźniak (2020).
Usage
## S3 method for class 'SDDRidMSH'
summary(object, ...)
Arguments
object |
an object of class |
... |
additional arguments affecting the summary produced. |
Value
A table reporting the logarithm of Bayes factors of homoskedastic to
heteroskedastic posterior odds "log(SDDR)" for each structural shock,
their numerical standard errors "NSE", and the implied posterior
probability of the homoskedasticity and heteroskedasticity hypothesis,
"Pr[homoskedasticity|data]" and "Pr[heteroskedasticity|data]"
respectively.
Author(s)
Tomasz Woźniak wozniak.tom@pm.me
References
Lütkepohl, H., and Woźniak, T., (2020) Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity. Journal of Economic Dynamics and Control 113, 103862, doi:10.1016/j.jedc.2020.103862.
See Also
verify_identification.PosteriorBSVARMSH
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_msh$new(us_fiscal_lsuw, M = 2)
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
# verify heteroskedasticity
sddr = verify_identification(posterior)
summary(sddr)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_msh$new(M = 2) |>
estimate(S = 10) |>
verify_identification() |>
summary() -> sddr_summary