summary.SDDRautoregression {bsvars} | R Documentation |
Provides summary of verifying hypotheses about autoregressive parameters
Description
Provides summary of the Savage-Dickey density ratios for verification of hypotheses about autoregressive parameters.
Usage
## S3 method for class 'SDDRautoregression'
summary(object, ...)
Arguments
object |
an object of class |
... |
additional arguments affecting the summary produced. |
Value
A table reporting the logarithm of Bayes factors of the restriction
against no restriction posterior odds in "log(SDDR)"
,
its numerical standard error "NSE"
, and the implied posterior
probability of the restriction holding or not hypothesis,
"Pr[H0|data]"
and "Pr[H1|data]"
respectively.
Author(s)
Tomasz Woźniak wozniak.tom@pm.me
See Also
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 1)
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
# verify autoregression
H0 = matrix(NA, ncol(us_fiscal_lsuw), ncol(us_fiscal_lsuw) + 1)
H0[1,3] = 0 # a hypothesis of no Granger causality from gdp to ttr
sddr = verify_autoregression(posterior, H0)
summary(sddr)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_sv$new(p = 1) |>
estimate(S = 10) |>
verify_autoregression(hypothesis = H0) |>
summary() -> sddr_summary
[Package bsvars version 3.1 Index]