specify_starting_values_bsvar_t {bsvars} | R Documentation |
R6 Class Representing StartingValuesBSVART
Description
The class StartingValuesBSVART presents starting values for the bsvar model with t-distributed structural shocks.
Super class
bsvars::StartingValuesBSVAR
-> StartingValuesBSVART
Public fields
A
an
NxK
matrix of starting values for the parameterA
.B
an
NxN
matrix of starting values for the parameterB
.hyper
a
(2*N+1)x2
matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.lambda
a
Tx1
vector of starting values for latent variables.df
a positive scalar with starting values for the degrees of freedom parameter of the Student-t conditional distribution of structural shock.
Methods
Public methods
Method new()
Create new starting values StartingValuesBSVART
Usage
specify_starting_values_bsvar_t$new(N, p, T, d = 0)
Arguments
N
a positive integer - the number of dependent variables in the model.
p
a positive integer - the autoregressive lag order of the SVAR model.
T
a positive integer - the the time series dimension of the dependent variable matrix
Y
.d
a positive integer - the number of
exogenous
variables in the model.
Returns
Starting values StartingValuesBSVART
Method get_starting_values()
Returns the elements of the starting values StartingValuesBSVAR as a list
.
Usage
specify_starting_values_bsvar_t$get_starting_values()
Examples
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system sv = specify_starting_values_bsvar$new(N = 3, p = 1) sv$get_starting_values() # show starting values as list
Method set_starting_values()
Returns the elements of the starting values StartingValuesBSVAR as a list
.
Usage
specify_starting_values_bsvar_t$set_starting_values(last_draw)
Arguments
last_draw
a list containing the last draw of elements
B
- anNxN
matrix,A
- anNxK
matrix, andhyper
- a vector of 5 positive real numbers.
Returns
An object of class StartingValuesBSVAR including the last draw of the current MCMC
as the starting value to be passed to the continuation of the MCMC estimation using estimate()
.
Examples
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system sv = specify_starting_values_bsvar$new(N = 3, p = 1) # Modify the starting values by: sv_list = sv$get_starting_values() # getting them as list sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry sv$set_starting_values(sv_list) # providing to the class object
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_starting_values_bsvar_t$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
# starting values for a bsvar model for a 3-variable system
sv = specify_starting_values_bsvar_t$new(N = 3, p = 1, T = 100)
## ------------------------------------------------
## Method `specify_starting_values_bsvar_t$get_starting_values`
## ------------------------------------------------
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar$new(N = 3, p = 1)
sv$get_starting_values() # show starting values as list
## ------------------------------------------------
## Method `specify_starting_values_bsvar_t$set_starting_values`
## ------------------------------------------------
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar$new(N = 3, p = 1)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object