specify_starting_values_bsvar_sv {bsvars} | R Documentation |
R6 Class Representing StartingValuesBSVARSV
Description
The class StartingValuesBSVARSV presents starting values for the bsvar model with Stochastic Volatility heteroskedasticity.
Super class
bsvars::StartingValuesBSVAR
-> StartingValuesBSVARSV
Public fields
A
an
NxK
matrix of starting values for the parameterA
.B
an
NxN
matrix of starting values for the parameterB
.hyper
a
(2*N+1)x2
matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.h
an
NxT
matrix with the starting values of the log-volatility processes.rho
an
N
-vector with values of SV autoregressive parameters.omega
an
N
-vector with values of SV process conditional standard deviations.sigma2v
an
N
-vector with values of SV process conditional variances.S
an
NxT
integer matrix with the auxiliary mixture component indicators.sigma2_omega
an
N
-vector with variances of the zero-mean normal prior for\omega_n
.s_
a positive scalar with the scale of the gamma prior of the hierarchical prior for
\sigma^2_{\omega}
.
Methods
Public methods
Method new()
Create new starting values StartingValuesBSVARSV.
Usage
specify_starting_values_bsvar_sv$new(N, p, T, d = 0)
Arguments
N
a positive integer - the number of dependent variables in the model.
p
a positive integer - the autoregressive lag order of the SVAR model.
T
a positive integer - the the time series dimension of the dependent variable matrix
Y
.d
a positive integer - the number of
exogenous
variables in the model.
Returns
Starting values StartingValuesBSVARSV.
Method get_starting_values()
Returns the elements of the starting values StartingValuesBSVARSV as a list
.
Usage
specify_starting_values_bsvar_sv$get_starting_values()
Examples
# starting values for a bsvar model with 1 lag for a 3-variable system sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100) sv$get_starting_values() # show starting values as list
Method set_starting_values()
Returns the elements of the starting values StartingValuesBSVAR_SV as a list
.
Usage
specify_starting_values_bsvar_sv$set_starting_values(last_draw)
Arguments
last_draw
a list containing the last draw of the current MCMC run.
Returns
An object of class StartingValuesBSVAR including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using estimate()
.
Examples
# starting values for a bsvar model with 1 lag for a 3-variable system sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100) # Modify the starting values by: sv_list = sv$get_starting_values() # getting them as list sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry sv$set_starting_values(sv_list) # providing to the class object
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_starting_values_bsvar_sv$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
# starting values for a bsvar model for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
## ------------------------------------------------
## Method `specify_starting_values_bsvar_sv$get_starting_values`
## ------------------------------------------------
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
sv$get_starting_values() # show starting values as list
## ------------------------------------------------
## Method `specify_starting_values_bsvar_sv$set_starting_values`
## ------------------------------------------------
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object