| specify_starting_values_bsvar_mix {bsvars} | R Documentation |
R6 Class Representing StartingValuesBSVARMIX
Description
The class StartingValuesBSVARMIX presents starting values for the bsvar model with a zero-mean mixture of normals model for structural shocks.
Super classes
bsvars::StartingValuesBSVAR -> bsvars::StartingValuesBSVARMSH -> StartingValuesBSVARMIX
Public fields
Aan
NxKmatrix of starting values for the parameterA.Ban
NxNmatrix of starting values for the parameterB.hypera
(2*N+1)x2matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.sigma2an
NxMmatrix of starting values for the MS state-specific variances of the structural shocks. Its elements sum to valueMover the rows.PR_TRan
MxMmatrix of starting values for the probability matrix of the Markov process. Its rows must be identical and the elements of each row sum to 1 over the rows.xian
MxTmatrix of starting values for the Markov process indicator. Its columns are a chosen column of an identity matrix of orderM.pi_0an
M-vector of starting values for mixture components state probabilities. Its elements sum to 1.
Methods
Public methods
Inherited methods
Method new()
Create new starting values StartingValuesBSVARMIX.
Usage
specify_starting_values_bsvar_mix$new(N, p, M, T, d = 0, finiteM = TRUE)
Arguments
Na positive integer - the number of dependent variables in the model.
pa positive integer - the autoregressive lag order of the SVAR model.
Man integer greater than 1 - the number of components of the mixture of normals.
Ta positive integer - the the time series dimension of the dependent variable matrix
Y.da positive integer - the number of
exogenousvariables in the model.finiteMa logical value - if true a finite mixture model is estimated. Otherwise, a sparse mixture model is estimated in which
M=20and the number of visited states is estimated.
Returns
Starting values StartingValuesBSVARMIX.
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_starting_values_bsvar_mix$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
# starting values for a bsvar model for a 3-variable system
sv = specify_starting_values_bsvar_mix$new(N = 3, p = 1, M = 2, T = 100)