| specify_prior_bsvar_t {bsvars} | R Documentation |
R6 Class Representing PriorBSVART
Description
The class PriorBSVART presents a prior specification for the bsvar model with t-distributed structural shocks.
Super class
bsvars::PriorBSVAR -> PriorBSVART
Public fields
Aan
NxKmatrix, the mean of the normal prior distribution for the parameter matrixA.A_V_inva
KxKprecision matrix of the normal prior distribution for each of the row of the parameter matrixA. This precision matrix is equation invariant.B_V_invan
NxNprecision matrix of the generalised-normal prior distribution for the structural matrixB. This precision matrix is equation invariant.B_nua positive integer greater of equal than
N, a shape parameter of the generalised-normal prior distribution for the structural matrixB.hyper_nu_Ba positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
B.hyper_a_Ba positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
B.hyper_s_BBa positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B.hyper_nu_BBa positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B.hyper_nu_Aa positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
A.hyper_a_Aa positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
A.hyper_s_AAa positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A.hyper_nu_AAa positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A.
Methods
Public methods
Inherited methods
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_prior_bsvar_t$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
prior = specify_prior_bsvar_t$new(N = 3, p = 1) # specify the prior
prior$A # show autoregressive prior mean