specify_prior_bsvar_t {bsvars} | R Documentation |
R6 Class Representing PriorBSVART
Description
The class PriorBSVART presents a prior specification for the bsvar model with t-distributed structural shocks.
Super class
bsvars::PriorBSVAR
-> PriorBSVART
Public fields
A
an
NxK
matrix, the mean of the normal prior distribution for the parameter matrixA
.A_V_inv
a
KxK
precision matrix of the normal prior distribution for each of the row of the parameter matrixA
. This precision matrix is equation invariant.B_V_inv
an
NxN
precision matrix of the generalised-normal prior distribution for the structural matrixB
. This precision matrix is equation invariant.B_nu
a positive integer greater of equal than
N
, a shape parameter of the generalised-normal prior distribution for the structural matrixB
.hyper_nu_B
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
B
.hyper_a_B
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
B
.hyper_s_BB
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_BB
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_A
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
A
.hyper_a_A
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
A
.hyper_s_AA
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.hyper_nu_AA
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.
Methods
Public methods
Inherited methods
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_prior_bsvar_t$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
prior = specify_prior_bsvar_t$new(N = 3, p = 1) # specify the prior
prior$A # show autoregressive prior mean