specify_prior_bsvar_msh {bsvars} | R Documentation |
The class PriorBSVAR-MSH presents a prior specification for the bsvar model with Markov Switching Heteroskedasticity.
bsvars::PriorBSVAR
-> PriorBSVAR-MSH
A
an NxK
matrix, the mean of the normal prior distribution for the parameter matrix A
.
A_V_inv
a KxK
precision matrix of the normal prior distribution for each of the row of the parameter matrix A
. This precision matrix is equation invariant.
B_V_inv
an NxN
precision matrix of the generalised-normal prior distribution for the structural matrix B
. This precision matrix is equation invariant.
B_nu
a positive integer greater of equal than N
, a shape parameter of the generalised-normal prior distribution for the structural matrix B
.
hyper_nu
a positive scalar, the shape parameter of the inverted-gamma 2 prior distribution for the two overall shrinkage parameters for matrices B
and A
.
hyper_a
a positive scalar, the shape parameter of the gamma prior for the two overall shrinkage parameters.
hyper_V
a positive scalar, the shape parameter of the inverted-gamma 2 for the level 3 hierarchy of shrinkage parameters.
hyper_S
a positive scalar, the scale parameter of the inverted-gamma 2 for the level 3 hierarchy of shrinkage parameters.
sigma_nu
a positive scalar, the shape parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks, \sigma^2_{n.s_t}
.
sigma_s
a positive scalar, the scale parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks, \sigma^2_{n.s_t}
.
PR_TR
an MxM
matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for transition probabilities matrix P
of the Markov process s_t
.
new()
Create a new prior specification PriorBSVAR-MSH.
specify_prior_bsvar_msh$new(N, p, M, stationary = rep(FALSE, N))
N
a positive integer - the number of dependent variables in the model.
p
a positive integer - the autoregressive lag order of the SVAR model.
M
an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
stationary
an N
logical vector - its element set to FALSE
sets the prior mean for the autoregressive parameters of the N
th equation to the white noise process, otherwise to random walk.
A new prior specification PriorBSVAR-MSH.
get_prior()
Returns the elements of the prior specification PriorBSVAR-MSH as a list
.
specify_prior_bsvar_msh$get_prior()
# a prior for 3-variable example with four lags and two regimes prior = specify_prior_bsvar_msh$new(N = 3, p = 4, M = 2) prior$get_prior() # show the prior as list
clone()
The objects of this class are cloneable with this method.
specify_prior_bsvar_msh$clone(deep = FALSE)
deep
Whether to make a deep clone.
prior = specify_prior_bsvar_msh$new(N = 3, p = 1, M = 2) # specify the prior
prior$A # show autoregressive prior mean
## ------------------------------------------------
## Method `specify_prior_bsvar_msh$get_prior`
## ------------------------------------------------
# a prior for 3-variable example with four lags and two regimes
prior = specify_prior_bsvar_msh$new(N = 3, p = 4, M = 2)
prior$get_prior() # show the prior as list