specify_prior_bsvar_msh {bsvars} | R Documentation |
R6 Class Representing PriorBSVARMSH
Description
The class PriorBSVARMSH presents a prior specification for the bsvar model with Markov Switching Heteroskedasticity.
Super class
bsvars::PriorBSVAR
-> PriorBSVARMSH
Public fields
A
an
NxK
matrix, the mean of the normal prior distribution for the parameter matrixA
.A_V_inv
a
KxK
precision matrix of the normal prior distribution for each of the row of the parameter matrixA
. This precision matrix is equation invariant.B_V_inv
an
NxN
precision matrix of the generalised-normal prior distribution for the structural matrixB
. This precision matrix is equation invariant.B_nu
a positive integer greater of equal than
N
, a shape parameter of the generalised-normal prior distribution for the structural matrixB
.hyper_nu_B
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
B
.hyper_a_B
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
B
.hyper_s_BB
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_BB
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_A
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
A
.hyper_a_A
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
A
.hyper_s_AA
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.hyper_nu_AA
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.sigma_nu
a positive scalar, the shape parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks,
\sigma^2_{n.s_t}
.sigma_s
a positive scalar, the scale parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks,
\sigma^2_{n.s_t}
.PR_TR
an
MxM
matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for transition probabilities matrixP
of the Markov processs_t
.
Methods
Public methods
Method new()
Create a new prior specification PriorBSVARMSH.
Usage
specify_prior_bsvar_msh$new(N, p, d = 0, M, stationary = rep(FALSE, N))
Arguments
N
a positive integer - the number of dependent variables in the model.
p
a positive integer - the autoregressive lag order of the SVAR model.
d
a positive integer - the number of
exogenous
variables in the model.M
an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
stationary
an
N
logical vector - its element set toFALSE
sets the prior mean for the autoregressive parameters of theN
th equation to the white noise process, otherwise to random walk.
Returns
A new prior specification PriorBSVARMSH.
Method get_prior()
Returns the elements of the prior specification PriorBSVARMSH as a list
.
Usage
specify_prior_bsvar_msh$get_prior()
Examples
# a prior for 3-variable example with four lags and two regimes prior = specify_prior_bsvar_msh$new(N = 3, p = 4, M = 2) prior$get_prior() # show the prior as list
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_prior_bsvar_msh$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
prior = specify_prior_bsvar_msh$new(N = 3, p = 1, M = 2) # specify the prior
prior$A # show autoregressive prior mean
## ------------------------------------------------
## Method `specify_prior_bsvar_msh$get_prior`
## ------------------------------------------------
# a prior for 3-variable example with four lags and two regimes
prior = specify_prior_bsvar_msh$new(N = 3, p = 4, M = 2)
prior$get_prior() # show the prior as list