specify_prior_bsvar_mix {bsvars} | R Documentation |
R6 Class Representing PriorBSVARMIX
Description
The class PriorBSVARMIX presents a prior specification for the bsvar model with a zero-mean mixture of normals model for structural shocks.
Super classes
bsvars::PriorBSVAR
-> bsvars::PriorBSVARMSH
-> PriorBSVARMIX
Public fields
A
an
NxK
matrix, the mean of the normal prior distribution for the parameter matrix.
A_V_inv
a
KxK
precision matrix of the normal prior distribution for each of the row of the parameter matrix. This precision matrix is equation invariant.
B_V_inv
an
NxN
precision matrix of the generalised-normal prior distribution for the structural matrix. This precision matrix is equation invariant.
B_nu
a positive integer greater of equal than
N
, a shape parameter of the generalised-normal prior distribution for the structural matrix.
hyper_nu_B
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
.
hyper_a_B
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
.
hyper_s_BB
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
.
hyper_nu_BB
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
.
hyper_nu_A
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
.
hyper_a_A
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
.
hyper_s_AA
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
.
hyper_nu_AA
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
.
sigma_nu
a positive scalar, the shape parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks,
.
sigma_s
a positive scalar, the scale parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks,
.
PR_TR
an
MxM
matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for the state probabilities the Markov process. Its rows must be identical.
Methods
Public methods
Inherited methods
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_prior_bsvar_mix$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
prior = specify_prior_bsvar_mix$new(N = 3, p = 1, M = 2) # specify the prior
prior$A # show autoregressive prior mean