specify_prior_bsvar_mix {bsvars} | R Documentation |
R6 Class Representing PriorBSVARMIX
Description
The class PriorBSVARMIX presents a prior specification for the bsvar model with a zero-mean mixture of normals model for structural shocks.
Super classes
bsvars::PriorBSVAR
-> bsvars::PriorBSVARMSH
-> PriorBSVARMIX
Public fields
A
an
NxK
matrix, the mean of the normal prior distribution for the parameter matrixA
.A_V_inv
a
KxK
precision matrix of the normal prior distribution for each of the row of the parameter matrixA
. This precision matrix is equation invariant.B_V_inv
an
NxN
precision matrix of the generalised-normal prior distribution for the structural matrixB
. This precision matrix is equation invariant.B_nu
a positive integer greater of equal than
N
, a shape parameter of the generalised-normal prior distribution for the structural matrixB
.hyper_nu_B
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
B
.hyper_a_B
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
B
.hyper_s_BB
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_BB
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_A
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
A
.hyper_a_A
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
A
.hyper_s_AA
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.hyper_nu_AA
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.sigma_nu
a positive scalar, the shape parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks,
\sigma^2_{n.s_t}
.sigma_s
a positive scalar, the scale parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks,
\sigma^2_{n.s_t}
.PR_TR
an
MxM
matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for the state probabilities the Markov processs_t
. Its rows must be identical.
Methods
Public methods
Inherited methods
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_prior_bsvar_mix$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
prior = specify_prior_bsvar_mix$new(N = 3, p = 1, M = 2) # specify the prior
prior$A # show autoregressive prior mean