specify_prior_bsvar {bsvars} | R Documentation |
R6 Class Representing PriorBSVAR
Description
The class PriorBSVAR presents a prior specification for the homoskedastic bsvar model.
Public fields
A
an
NxK
matrix, the mean of the normal prior distribution for the parameter matrixA
.A_V_inv
a
KxK
precision matrix of the normal prior distribution for each of the row of the parameter matrixA
. This precision matrix is equation invariant.B_V_inv
an
NxN
precision matrix of the generalised-normal prior distribution for the structural matrixB
. This precision matrix is equation invariant.B_nu
a positive integer greater of equal than
N
, a shape parameter of the generalised-normal prior distribution for the structural matrixB
.hyper_nu_B
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
B
.hyper_a_B
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
B
.hyper_s_BB
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_BB
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
B
.hyper_nu_A
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix
A
.hyper_a_A
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix
A
.hyper_s_AA
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.hyper_nu_AA
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix
A
.
Methods
Public methods
Method new()
Create a new prior specification PriorBSVAR.
Usage
specify_prior_bsvar$new(N, p, d = 0, stationary = rep(FALSE, N))
Arguments
N
a positive integer - the number of dependent variables in the model.
p
a positive integer - the autoregressive lag order of the SVAR model.
d
a positive integer - the number of
exogenous
variables in the model.stationary
an
N
logical vector - its element set toFALSE
sets the prior mean for the autoregressive parameters of theN
th equation to the white noise process, otherwise to random walk.
Returns
A new prior specification PriorBSVAR.
Examples
# a prior for 3-variable example with one lag and stationary data prior = specify_prior_bsvar$new(N = 3, p = 1, stationary = rep(TRUE, 3)) prior$A # show autoregressive prior mean
Method get_prior()
Returns the elements of the prior specification PriorBSVAR as a list
.
Usage
specify_prior_bsvar$get_prior()
Examples
# a prior for 3-variable example with four lags prior = specify_prior_bsvar$new(N = 3, p = 4) prior$get_prior() # show the prior as list
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_prior_bsvar$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
prior = specify_prior_bsvar$new(N = 3, p = 1) # a prior for 3-variable example with one lag
prior$A # show autoregressive prior mean
## ------------------------------------------------
## Method `specify_prior_bsvar$new`
## ------------------------------------------------
# a prior for 3-variable example with one lag and stationary data
prior = specify_prior_bsvar$new(N = 3, p = 1, stationary = rep(TRUE, 3))
prior$A # show autoregressive prior mean
## ------------------------------------------------
## Method `specify_prior_bsvar$get_prior`
## ------------------------------------------------
# a prior for 3-variable example with four lags
prior = specify_prior_bsvar$new(N = 3, p = 4)
prior$get_prior() # show the prior as list