specify_posterior_bsvar_msh {bsvars} | R Documentation |
R6 Class Representing PosteriorBSVARMSH
Description
The class PosteriorBSVARMSH contains posterior output and the specification including
the last MCMC draw for the bsvar model with Markov Switching Heteroskedasticity.
Note that due to the thinning of the MCMC output the starting value in element last_draw
might not be equal to the last draw provided in element posterior
.
Public fields
last_draw
an object of class BSVARMSH with the last draw of the current MCMC run as the starting value to be passed to the continuation of the MCMC estimation using
estimate()
.posterior
a list containing Bayesian estimation output.
Methods
Public methods
Method new()
Create a new posterior output PosteriorBSVARMSH.
Usage
specify_posterior_bsvar_msh$new(specification_bsvar, posterior_bsvar)
Arguments
specification_bsvar
an object of class BSVARMSH with the last draw of the current MCMC run as the starting value.
posterior_bsvar
a list containing Bayesian estimation output.
Returns
A posterior output PosteriorBSVARMSH.
Method get_posterior()
Returns a list containing Bayesian estimation output.
Usage
specify_posterior_bsvar_msh$get_posterior()
Examples
data(us_fiscal_lsuw) specification = specify_bsvar_msh$new(us_fiscal_lsuw, M = 2) set.seed(123) estimate = estimate(specification, 10, thin = 1) estimate$get_posterior()
Method get_last_draw()
Returns an object of class BSVARMSH with the last draw of the current MCMC run as the starting value to be passed to the continuation of the MCMC estimation using estimate()
.
Usage
specify_posterior_bsvar_msh$get_last_draw()
Examples
data(us_fiscal_lsuw) # specify the model and set seed specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2) # run the burn-in set.seed(123) burn_in = estimate(specification, 10, thin = 2) # estimate the model posterior = estimate(burn_in, 10, thin = 2)
Method is_normalised()
Returns TRUE
if the posterior has been normalised using normalise_posterior()
and FALSE
otherwise.
Usage
specify_posterior_bsvar_msh$is_normalised()
Examples
# upload data data(us_fiscal_lsuw) # specify the model and set seed specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2) # estimate the model set.seed(123) posterior = estimate(specification, 10, thin = 1) # check normalisation status beforehand posterior$is_normalised() # normalise the posterior BB = posterior$last_draw$starting_values$B # get the last draw of B B_hat = diag((-1) * sign(diag(BB))) %*% BB # set negative diagonal elements normalise_posterior(posterior, B_hat) # draws in posterior are normalised # check normalisation status afterwards posterior$is_normalised()
Method set_normalised()
Sets the private indicator normalised
to TRUE.
Usage
specify_posterior_bsvar_msh$set_normalised(value)
Arguments
value
(optional) a logical value to be passed to indicator
normalised
.
Examples
# This is an internal function that is run while executing normalise_posterior() # Observe its working by analysing the workflow: # upload data data(us_fiscal_lsuw) # specify the model and set seed specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2) set.seed(123) # estimate the model posterior = estimate(specification, 10, thin = 1) # check normalisation status beforehand posterior$is_normalised() # normalise the posterior BB = posterior$last_draw$starting_values$B # get the last draw of B B_hat = diag(sign(diag(BB))) %*% BB # set positive diagonal elements normalise_posterior(posterior, B_hat) # draws in posterior are normalised # check normalisation status afterwards posterior$is_normalised()
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_posterior_bsvar_msh$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Examples
# This is a function that is used within estimate()
data(us_fiscal_lsuw)
specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
set.seed(123)
estimate = estimate(specification, 10, thin = 1)
class(estimate)
## ------------------------------------------------
## Method `specify_posterior_bsvar_msh$get_posterior`
## ------------------------------------------------
data(us_fiscal_lsuw)
specification = specify_bsvar_msh$new(us_fiscal_lsuw, M = 2)
set.seed(123)
estimate = estimate(specification, 10, thin = 1)
estimate$get_posterior()
## ------------------------------------------------
## Method `specify_posterior_bsvar_msh$get_last_draw`
## ------------------------------------------------
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
# run the burn-in
set.seed(123)
burn_in = estimate(specification, 10, thin = 2)
# estimate the model
posterior = estimate(burn_in, 10, thin = 2)
## ------------------------------------------------
## Method `specify_posterior_bsvar_msh$is_normalised`
## ------------------------------------------------
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
# estimate the model
set.seed(123)
posterior = estimate(specification, 10, thin = 1)
# check normalisation status beforehand
posterior$is_normalised()
# normalise the posterior
BB = posterior$last_draw$starting_values$B # get the last draw of B
B_hat = diag((-1) * sign(diag(BB))) %*% BB # set negative diagonal elements
normalise_posterior(posterior, B_hat) # draws in posterior are normalised
# check normalisation status afterwards
posterior$is_normalised()
## ------------------------------------------------
## Method `specify_posterior_bsvar_msh$set_normalised`
## ------------------------------------------------
# This is an internal function that is run while executing normalise_posterior()
# Observe its working by analysing the workflow:
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
set.seed(123)
# estimate the model
posterior = estimate(specification, 10, thin = 1)
# check normalisation status beforehand
posterior$is_normalised()
# normalise the posterior
BB = posterior$last_draw$starting_values$B # get the last draw of B
B_hat = diag(sign(diag(BB))) %*% BB # set positive diagonal elements
normalise_posterior(posterior, B_hat) # draws in posterior are normalised
# check normalisation status afterwards
posterior$is_normalised()