specify_identification_bsvars {bsvars}R Documentation

R6 Class Representing IdentificationBSVARs

Description

The class IdentificationBSVARs presents the identifying restrictions for the bsvar models.

Public fields

VB

a list of N matrices determining the unrestricted elements of matrix BB.

Methods

Public methods


Method new()

Create new identifying restrictions IdentificationBSVARs.

Usage
specify_identification_bsvars$new(N, B)
Arguments
N

a positive integer - the number of dependent variables in the model.

B

a logical NxN matrix containing value TRUE for the elements of the structural matrix BB to be estimated and value FALSE for exclusion restrictions to be set to zero.

Returns

Identifying restrictions IdentificationBSVARs.


Method get_identification()

Returns the elements of the identification pattern IdentificationBSVARs as a list.

Usage
specify_identification_bsvars$get_identification()
Examples
B    = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec = specify_identification_bsvars$new(N = 3, B = B)
spec$get_identification()


Method set_identification()

Set new starting values StartingValuesBSVAR.

Usage
specify_identification_bsvars$set_identification(N, B)
Arguments
N

a positive integer - the number of dependent variables in the model.

B

a logical NxN matrix containing value TRUE for the elements of the structural matrix BB to be estimated and value FALSE for exclusion restrictions to be set to zero.

Examples
spec = specify_identification_bsvars$new(N = 3) # specify a model with the default option
B    = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec$set_identification(N = 3, B = B)  # modify an existing specification
spec$get_identification()              # check the outcome

Method clone()

The objects of this class are cloneable with this method.

Usage
specify_identification_bsvars$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

specify_identification_bsvars$new(N = 3) # recursive specification for a 3-variable system

B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
specify_identification_bsvars$new(N = 3, B = B) # an alternative identification pattern


## ------------------------------------------------
## Method `specify_identification_bsvars$get_identification`
## ------------------------------------------------

B    = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec = specify_identification_bsvars$new(N = 3, B = B)
spec$get_identification()


## ------------------------------------------------
## Method `specify_identification_bsvars$set_identification`
## ------------------------------------------------

spec = specify_identification_bsvars$new(N = 3) # specify a model with the default option
B    = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec$set_identification(N = 3, B = B)  # modify an existing specification
spec$get_identification()              # check the outcome

[Package bsvars version 3.1 Index]