specify_identification_bsvars {bsvars} | R Documentation |
R6 Class Representing IdentificationBSVARs
Description
The class IdentificationBSVARs presents the identifying restrictions for the bsvar models.
Public fields
VB
a list of
N
matrices determining the unrestricted elements of matrixB
.
Methods
Public methods
Method new()
Create new identifying restrictions IdentificationBSVARs.
Usage
specify_identification_bsvars$new(N, B)
Arguments
N
a positive integer - the number of dependent variables in the model.
B
a logical
NxN
matrix containing valueTRUE
for the elements of the structural matrixB
to be estimated and valueFALSE
for exclusion restrictions to be set to zero.
Returns
Identifying restrictions IdentificationBSVARs.
Method get_identification()
Returns the elements of the identification pattern IdentificationBSVARs as a list
.
Usage
specify_identification_bsvars$get_identification()
Examples
B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B spec = specify_identification_bsvars$new(N = 3, B = B) spec$get_identification()
Method set_identification()
Set new starting values StartingValuesBSVAR.
Usage
specify_identification_bsvars$set_identification(N, B)
Arguments
N
a positive integer - the number of dependent variables in the model.
B
a logical
NxN
matrix containing valueTRUE
for the elements of the structural matrixB
to be estimated and valueFALSE
for exclusion restrictions to be set to zero.
Examples
spec = specify_identification_bsvars$new(N = 3) # specify a model with the default option B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B spec$set_identification(N = 3, B = B) # modify an existing specification spec$get_identification() # check the outcome
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_identification_bsvars$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
specify_identification_bsvars$new(N = 3) # recursive specification for a 3-variable system
B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
specify_identification_bsvars$new(N = 3, B = B) # an alternative identification pattern
## ------------------------------------------------
## Method `specify_identification_bsvars$get_identification`
## ------------------------------------------------
B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec = specify_identification_bsvars$new(N = 3, B = B)
spec$get_identification()
## ------------------------------------------------
## Method `specify_identification_bsvars$set_identification`
## ------------------------------------------------
spec = specify_identification_bsvars$new(N = 3) # specify a model with the default option
B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec$set_identification(N = 3, B = B) # modify an existing specification
spec$get_identification() # check the outcome