| specify_bsvar_sv {bsvars} | R Documentation |
R6 Class representing the specification of the BSVAR model with Stochastic Volatility heteroskedasticity.
Description
The class BSVARSV presents complete specification for the BSVAR model with Stochastic Volatility heteroskedasticity.
Public fields
pa non-negative integer specifying the autoregressive lag order of the model.
identificationan object IdentificationBSVARs with the identifying restrictions.
prioran object PriorBSVARSV with the prior specification.
data_matricesan object DataMatricesBSVAR with the data matrices.
starting_valuesan object StartingValuesBSVARSV with the starting values.
centred_sva logical value - if true a centred parameterisation of the Stochastic Volatility process is estimated. Otherwise, its non-centred parameterisation is estimated. See Lütkepohl, Shang, Uzeda, Woźniak (2022) for more info.
Methods
Public methods
Method new()
Create a new specification of the BSVAR model with Stochastic Volatility heteroskedasticity, BSVARSV.
Usage
specify_bsvar_sv$new( data, p = 1L, B, exogenous = NULL, centred_sv = FALSE, stationary = rep(FALSE, ncol(data)) )
Arguments
dataa
(T+p)xNmatrix with time series data.pa positive integer providing model's autoregressive lag order.
Ba logical
NxNmatrix containing valueTRUEfor the elements of the structural matrixBto be estimated and valueFALSEfor exclusion restrictions to be set to zero.exogenousa
(T+p)xdmatrix of exogenous variables.centred_sva logical value. If
FALSEa non-centred Stochastic Volatility processes for conditional variances are estimated. Otherwise, a centred process is estimated.stationaryan
Nlogical vector - its element set toFALSEsets the prior mean for the autoregressive parameters of theNth equation to the white noise process, otherwise to random walk.
Returns
A new complete specification for the bsvar model with Stochastic Volatility heteroskedasticity, BSVARSV.
Method get_data_matrices()
Returns the data matrices as the DataMatricesBSVAR object.
Usage
specify_bsvar_sv$get_data_matrices()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_data_matrices()
Method get_identification()
Returns the identifying restrictions as the IdentificationBSVARs object.
Usage
specify_bsvar_sv$get_identification()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_identification()
Method get_prior()
Returns the prior specification as the PriorBSVARSV object.
Usage
specify_bsvar_sv$get_prior()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_prior()
Method get_starting_values()
Returns the starting values as the StartingValuesBSVARSV object.
Usage
specify_bsvar_sv$get_starting_values()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_starting_values()
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_bsvar_sv$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
estimate, specify_posterior_bsvar_sv
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
## ------------------------------------------------
## Method `specify_bsvar_sv$get_data_matrices`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_data_matrices()
## ------------------------------------------------
## Method `specify_bsvar_sv$get_identification`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_identification()
## ------------------------------------------------
## Method `specify_bsvar_sv$get_prior`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_prior()
## ------------------------------------------------
## Method `specify_bsvar_sv$get_starting_values`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_starting_values()