specify_bsvar_msh {bsvars} | R Documentation |
The class BSVAR-MSH presents complete specification for the BSVAR model with Markov Switching Heteroskedasticity.
p
a non-negative integer specifying the autoregressive lag order of the model.
identification
an object IdentificationBSVARs with the identifying restrictions.
prior
an object PriorBSVAR-MSH with the prior specification.
data_matrices
an object DataMatricesBSVAR with the data matrices.
starting_values
an object StartingValuesBSVAR-MSH with the starting values.
finiteM
a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which M=20
and the number of visited states is estimated.
new()
Create a new specification of the BSVAR model with Markov Switching Heteroskedasticity, BSVAR-MSH.
specify_bsvar_msh$new( data, p = 1L, M, B, stationary = rep(FALSE, ncol(data)), finiteM = TRUE )
data
a (T+p)xN
matrix with time series data.
p
a positive integer providing model's autoregressive lag order.
M
an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
B
a logical NxN
matrix containing value TRUE
for the elements of the structural matrix B
to be estimated and value FALSE
for exclusion restrictions to be set to zero.
stationary
an N
logical vector - its element set to FALSE
sets the prior mean for the autoregressive parameters of the N
th equation to the white noise process, otherwise to random walk.
finiteM
a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which M=20
and the number of visited states is estimated.
A new complete specification for the bsvar model with Markov Switching Heteroskedasticity, BSVAR-MSH.
get_data_matrices()
Returns the data matrices as the DataMatricesBSVAR object.
specify_bsvar_msh$get_data_matrices()
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_data_matrices()
get_identification()
Returns the identifying restrictions as the IdentificationBSVARs object.
specify_bsvar_msh$get_identification()
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_identification()
get_prior()
Returns the prior specification as the PriorBSVAR-MSH object.
specify_bsvar_msh$get_prior()
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_prior()
get_starting_values()
Returns the starting values as the StartingValuesBSVAR-MSH object.
specify_bsvar_msh$get_starting_values()
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_starting_values()
clone()
The objects of this class are cloneable with this method.
specify_bsvar_msh$clone(deep = FALSE)
deep
Whether to make a deep clone.
estimate_bsvar_msh
, specify_posterior_bsvar_msh
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
## ------------------------------------------------
## Method `specify_bsvar_msh$get_data_matrices`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_data_matrices()
## ------------------------------------------------
## Method `specify_bsvar_msh$get_identification`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_identification()
## ------------------------------------------------
## Method `specify_bsvar_msh$get_prior`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_prior()
## ------------------------------------------------
## Method `specify_bsvar_msh$get_starting_values`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_starting_values()