specify_bsvar_msh {bsvars} | R Documentation |
R6 Class representing the specification of the BSVAR model with Markov Switching Heteroskedasticity.
Description
The class BSVARMSH presents complete specification for the BSVAR model with Markov Switching Heteroskedasticity.
Public fields
p
a non-negative integer specifying the autoregressive lag order of the model.
identification
an object IdentificationBSVARs with the identifying restrictions.
prior
an object PriorBSVARMSH with the prior specification.
data_matrices
an object DataMatricesBSVAR with the data matrices.
starting_values
an object StartingValuesBSVARMSH with the starting values.
finiteM
a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which
M=20
and the number of visited states is estimated.
Methods
Public methods
Method new()
Create a new specification of the BSVAR model with Markov Switching Heteroskedasticity, BSVARMSH.
Usage
specify_bsvar_msh$new( data, p = 1L, M = 2L, B, exogenous = NULL, stationary = rep(FALSE, ncol(data)), finiteM = TRUE )
Arguments
data
a
(T+p)xN
matrix with time series data.p
a positive integer providing model's autoregressive lag order.
M
an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
B
a logical
NxN
matrix containing valueTRUE
for the elements of the structural matrixB
to be estimated and valueFALSE
for exclusion restrictions to be set to zero.exogenous
a
(T+p)xd
matrix of exogenous variables.stationary
an
N
logical vector - its element set toFALSE
sets the prior mean for the autoregressive parameters of theN
th equation to the white noise process, otherwise to random walk.finiteM
a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which
M=20
and the number of visited states is estimated.
Returns
A new complete specification for the bsvar model with Markov Switching Heteroskedasticity, BSVARMSH.
Method get_data_matrices()
Returns the data matrices as the DataMatricesBSVAR object.
Usage
specify_bsvar_msh$get_data_matrices()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_data_matrices()
Method get_identification()
Returns the identifying restrictions as the IdentificationBSVARs object.
Usage
specify_bsvar_msh$get_identification()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_identification()
Method get_prior()
Returns the prior specification as the PriorBSVARMSH object.
Usage
specify_bsvar_msh$get_prior()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_prior()
Method get_starting_values()
Returns the starting values as the StartingValuesBSVARMSH object.
Usage
specify_bsvar_msh$get_starting_values()
Examples
data(us_fiscal_lsuw) spec = specify_bsvar_msh$new( data = us_fiscal_lsuw, p = 4, M = 2 ) spec$get_starting_values()
Method clone()
The objects of this class are cloneable with this method.
Usage
specify_bsvar_msh$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
estimate
, specify_posterior_bsvar_msh
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
## ------------------------------------------------
## Method `specify_bsvar_msh$get_data_matrices`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_data_matrices()
## ------------------------------------------------
## Method `specify_bsvar_msh$get_identification`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_identification()
## ------------------------------------------------
## Method `specify_bsvar_msh$get_prior`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_prior()
## ------------------------------------------------
## Method `specify_bsvar_msh$get_starting_values`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_starting_values()