forecast.PosteriorBSVAR {bsvars} | R Documentation |
Forecasting using Structural Vector Autoregression
Description
Samples from the joint predictive density of all of the dependent
variables for models from packages bsvars, bsvarSIGNs or
bvarPANELs at forecast horizons from 1 to horizon
specified as
an argument of the function.
Usage
## S3 method for class 'PosteriorBSVAR'
forecast(
posterior,
horizon = 1,
exogenous_forecast = NULL,
conditional_forecast = NULL
)
Arguments
posterior |
posterior estimation outcome - an object of class
|
horizon |
a positive integer, specifying the forecasting horizon. |
exogenous_forecast |
a matrix of dimension |
conditional_forecast |
a |
Value
A list of class Forecasts
containing the
draws from the predictive density and data. The output list includes element:
- forecasts
an
NxTxS
array with the draws from predictive density- Y
an
NxT
matrix with the data on dependent variables
Author(s)
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
# run the burn-in
burn_in = estimate(specification, 10)
# estimate the model
posterior = estimate(burn_in, 20)
# sample from predictive density 1 year ahead
predictive = forecast(posterior, 4)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new(p = 1) |>
estimate(S = 10) |>
estimate(S = 20) |>
forecast(horizon = 4) -> predictive
# conditional forecasting 2 quarters ahead conditioning on
# provided future values for the Gross Domestic Product
############################################################
cf = matrix(NA , 2, 3)
cf[,3] = tail(us_fiscal_lsuw, 1)[3] # conditional forecasts equal to the last gdp observation
predictive = forecast(posterior, 2, conditional_forecast = cf)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new(p = 1) |>
estimate(S = 10) |>
estimate(S = 20) |>
forecast(horizon = 2, conditional_forecast = cf) -> predictive