momentsbssn {bssn} | R Documentation |
Moments for the Birnbaum-Saunders model based on Skew-Normal distribution
Description
Mean, variance, skewness and kurtosis for the Birnbaum-Saunders model based on Skew-Normal distribution defined in Filidor et. al (2011).
Usage
meanbssn(alpha=0.5,beta=1,lambda=1.5)
varbssn(alpha=0.5,beta=1,lambda=1.5)
skewbssn(alpha=0.5,beta=1,lambda=1.5)
kurtbssn(alpha=0.5,beta=1,lambda=1.5)
Arguments
alpha |
shape parameter |
beta |
scale parameter |
lambda |
skewness parameter |
Value
meanbssn
gives the mean, varbssn
gives the variance, skewbssn
gives the skewness, kurtbssn
gives the kurtosis.
Author(s)
Rocio Maehara rmaeharaa@gmail.com and Luis Benites lbenitesanchez@gmail.com
References
Vilca, Filidor; Santana, L. R.; Leiva, Victor; Balakrishnan, N. (2011). Estimation of extreme percentiles in Birnbaum Saunders distributions. Computational Statistics & Data Analysis (Print), 55, 1665-1678.
Santana, Lucia; Vilca, Filidor; Leiva, Victor (2011). Influence analysis in skew-Birnbaum Saunders regression models and applications. Journal of Applied Statistics, 38, 1633-1649.
See Also
bssn
, EMbssn
, momentsbssn
, ozone
, reliabilitybssn
Examples
## Let's compute some moments for a Birnbaum-Saunders model based on Skew normal Distribution.
# The well known mean, variance, skewness and kurtosis
meanbssn(alpha=0.5,beta=1,lambda=1.5)
varbssn(alpha=0.5,beta=1,lambda=1.5)
skewbssn(alpha=0.5,beta=1,lambda=1.5)
kurtbssn(alpha=0.5,beta=1,lambda=1.5)