FMshnReg {bssn} | R Documentation |
Linear regression models using finite mixture of Sinh-normal distribution
Description
Performs the EM-type algorithm with conditonal maximation to perform maximum likelihood inference of the parameters of the proposed model based on the assumption that the error term follows a finite mixture of Sinh-normal distributions.
Usage
FMshnReg(y, x1, alpha = NULL, Abetas = NULL, medj=NULL,
pii = NULL, g = NULL, get.init = TRUE,algorithm = "K-means",
accuracy = 10^-6, show.envelope="FALSE", iter.max = 100)
Arguments
y |
the response matrix (dimension nx1). |
x1 |
Matrix or vector of covariates. |
alpha |
Value of the shape parameter for the EM algorithm. Each of them must be a vector of length g. (the algorithm considers the number of components to be adjusted based on the size of these vectors). |
Abetas |
Parameters of vector regression dimension |
medj |
a list of |
pii |
Value for the EM algorithm. Each of them must be a vector of length g. (the algorithm considers the number of components to be adjusted based on the size of these vectors). |
g |
The number of cluster to be considered in fitting. |
get.init |
if TRUE, the initial values are generated via k-means. |
algorithm |
clustering procedure of a series of vectors according to a criterion. The clustering algorithms may classified in 4 main categories: exclusive, overlapping, hierarchical and probabilistic. |
accuracy |
The convergence maximum error. |
show.envelope |
Logical; if TRUE, show the simulated envelope for the fitted model. |
iter.max |
The maximum number of iterations of the EM algorithm |
Value
The function returns a list with 10 elements detailed as
iter |
Number of iterations. |
criteria |
Attained criteria value. |
convergence |
Convergence reached or not. |
SE |
Standard Error estimates, if the output shows |
table |
Table containing the inference for the estimated parameters. |
LK |
log-likelihood. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
EDC |
Efficient Determination criterion. |
time |
Processing time. |
Author(s)
Rocio Maehara rmaeharaa@gmail.com and Luis Benites lbenitesanchez@gmail.com
References
Maehara, R. and Benites, L. (2020). Linear regression models using finite mixture of Sinh-normal distribution. In Progress.
Bartolucci, F. and Scaccia, L. (2005). The use of mixtures for dealing with non-normal regression errors, Computational Statistics & Data Analysis 48(4): 821-834.
Examples
## Not run:
#Using the AIS data
library(FMsmsnReg)
data(ais)
#################################
#The model
x1 <- cbind(1,ais$SSF,ais$Ht)
y <- ais$Bfat
library(ClusterR) #This library is useful for using the k-medoids algorithm.
FMshnReg(y, x1, get.init = TRUE, g=2, algorithm="k-medoids",
accuracy = 10^-6, show.envelope="FALSE", iter.max = 1000)
#########################################
#A simple output example
------------------------------------------------------------
Finite Mixture of Sinh Normal Regression Model
------------------------------------------------------------
Observations = 202
-----------
Estimates
-----------
Estimate SE
alpha1 0.81346 0.10013
alpha2 3.04894 0.32140
beta0 15.08998 1.70024
beta1 0.17708 0.00242
beta2 -0.07687 0.00934
mu1 -0.25422 0.18069
mu2 0.37944 0.38802
pii1 0.59881 0.41006
------------------------
Model selection criteria
------------------------
Loglik AIC BIC EDC
Value -355.625 721.25 737.791 725.463
-------
Details
-------
Convergence reached? = TRUE
EM iterations = 39 / 1000
Criteria = 6.58e-07
Processing time = 0.725559 secs
## End(Not run)