bm {bsreg} | R Documentation |
Fit a Bayesian model
Description
Fit a Bayesian model
Usage
bm(x, ...)
## S3 method for class 'formula'
bm(
x,
data = NULL,
n_save = 1000L,
n_burn = 500L,
options = set_options(),
mh = set_mh(),
verbose = TRUE,
W,
X_SLX,
type = c("lm", "slx", "sar", "sem", "sdm", "sdem", "sv"),
...
)
## S3 method for class 'bm'
bm(x, n_save = 1000L, n_burn = 0L, verbose = TRUE, ...)
blm(...)
bslx(...)
bsar(...)
bsem(...)
bsdm(...)
bsdem(...)
bsv(...)
Arguments
x |
Formula or |
... |
Not used. |
data |
A |
n_save , n_burn |
Integer scalar. Number of draws for the burn-in period and to store for inference. |
options |
Settings for the prior setup. See |
mh |
Settings to tune the Metropolis-Hastings step. See |
verbose |
Logical scalar. Whether to print status updates. |
W |
Numeric matrix (or function to construct one) with the spatial connectivities. |
X_SLX |
Numeric matrix with explanatory variables that should be lagged spatially. |
type |
Character scalar used to specify the desired model. |
Value
Returns a list with draws from the specified Bayesian model and an object to obtain further samples.
Examples
N <- 100L
beta <- 1:5
X <- matrix(rnorm(N * 5), N, 5)
y <- X %*% beta + rnorm(N)
bm(y ~ X, n_burn = 100, n_draw = 100)
# Reproduce the linear model in Kuschnig (2022)
blm(log(sales) ~ log(price / cpi) + log(ndi / cpi) +
factor(name) + factor(year), data = cigarettes)
[Package bsreg version 0.0.2 Index]