dirichlet.o {bspmma} | R Documentation |
Mixture of Ordinary Dirichlet Model
Description
MCMC generation of posterior distributions for the
usual (unconditional) Dirichlet mixing distribution model, using
an m+1
-cycle Gibbs sampler
Usage
dirichlet.o(data, ncycles=10, M=1,d=c(.1,.1,0,1000),
start=NULL,K=100)
Arguments
data |
is a two-column matrix with a row for each study in the meta-analysis. The first column is the log of estimate of relative risk, often a log(odds ratio). The second column is the true or estimated standard error of the log(odds ratio). |
ncycles |
is the number of cycles of the Markov chain. |
M |
is the precision parameter of the Dirichlet process prior. |
d |
is a vector of length four with the values of the hyperparameters, in order, the location and scale of the Gamma inverse prior, mean and variance multiplier for the normal prior on mu. |
start |
is an optional vector containing starting values for the
parameters, |
K |
is the number of summands to include when one uses
Sethuraman's (1994) representation for getting the parameter
|
Details
This function generates MCMC output for the posterior distribution for
the parameters \psi_i, i=1,...,m
where m
is the number of
studies in the meta-analysis, \mu
, \tau
, and \eta
in the ordinary Dirichlet mixing model for random-effects
meta-analysis. Notation is taken from Burr (2012),
Model 2
and 3
.
The MCMC algorithm for estimating the posterior under this model is
given in Burr and Doss (2005). The chain is a
(m+1)
-cycle Gibbs sampler which cycles through
the vector of \psi_i
's and the triple \mu
, \tau
,
\eta
, and the main part of the computational burden is in the
first part of the cycle, the generation of the vector of
\psi_i
's.
Value
call |
the call that resulted in this object |
ncycles |
the number of cycles in the Markov chain |
M |
the value of the precision parameter for the conditional Dirichlet model |
prior |
the vector length four of hyperparameters |
chain |
A matrix with |
start.user |
logical, TRUE if the user supplied initial values of
the parameter vector, FALSE if input argument |
start |
vector of initial parameter values, whether default or user-supplied |
References
Burr, Deborah (2012). “bspmma: An R package for Bayesian semi-parametric models for meta-analysis.” Journal of Statistical Software 50(4), 1–23. http://www.jstatsoft.org/v50/i04/.
Burr, D. and Doss, H. (2005). “A Bayesian semiparametric model for random-effects meta-analysis.” Journal of the American Statistical Association 100 242–251.
Sethuraman, J. (1994). “A constructive definition of Dirichlet priors.” Statistica Sinica 4, 639–650.
Examples
## Not run:
data(breast.17) # the dataset
breast.data <- as.matrix(breast.17) # put data in matrix object
set.seed(1) # initialize the seed at 1
diro <- dirichlet.o(breast.data, ncycles=4000, M=5)
## a short description of the model and Markov chain
print(diro1)
## the last mcmc cycle
diro$mcmc[4001,]
## End(Not run)