dirichlet.c {bspmma} | R Documentation |
Mixture of Conditional Dirichlet Model
Description
MCMC generation of posterior distributions for the
conditional Dirichlet mixing distribution model, using
m+1
-cycle Gibbs sampler
Usage
dirichlet.c(data, ncycles=10, M=1,d=c(.1,.1,0,1000),
start=NULL)
Arguments
data |
is a two-column matrix with a row for each study in the meta-analysis. The first column is the log of estimate of relative risk, often a log(odds ratio). The second column is the true or estimated standard error of the log(odds ratio). |
ncycles |
is the number of cycles of the Markov chain. |
M |
is the precision parameter of the Dirichlet process prior. |
d |
is a vector of length four with the values of the
hyperparameters, in order, the location and scale of the Gamma
inverse prior, mean and variance multiplier for the normal prior
on |
start |
is an optional vector containing starting values for the
parameters, |
Details
This function generates MCMC output for the posterior distribution for
the parameters \psi_i, i=1, \ldots, m
where m
is the number of
studies in the meta-analysis, \mu
and \tau
,
in the conditional Dirichlet mixing model for random-effects
meta-analysis. Notation is taken from Burr (2012),
Model 4
.
The MCMC algorithm for estimating the posterior under this model is
given in Burr and Doss (2005). The chain is a
(m+1)
-cycle Gibbs sampler which cycles through
the vector of \psi_i
's and the pair \mu
,
\tau
, and
the main part of the computational burden is in the first part of the
cycle, the generation of the vector of \psi_i
's.
If starting values are not specified via the argument start
,
the default values are used, which are based on the data. The study
estimates are the starting values for the \psi_i, i=1, \ldots,m
,
and the mean and standard deviation of the study estimates are the
starting values for \mu
and \tau
, respectively.
Value
call |
the call that resulted in this object |
ncycles |
the number of cycles in the Markov chain |
M |
the value of the precision parameter for the conditional Dirichlet model |
prior |
the vector length four of hyperparameters |
chain |
A matrix with |
start.user |
logical, TRUE if the user supplied initial values of
the parameter vector, FALSE if input argument |
start |
vector of initial parameter values used in the MCMC algorithm, whether this was the default or was user-supplied |
References
Burr, Deborah (2012). “bspmma: An R package for Bayesian semi-parametric models for meta-analysis.” Journal of Statistical Software 50(4), 1–23. http://www.jstatsoft.org/v50/i04/.
Burr, D. and Doss, H. (2005). “A Bayesian semiparametric model for random-effects meta-analysis.” Journal of the American Statistical Association 100 242–251.
Sethuraman, J. (1994). “A constructive definition of Dirichlet priors.” Statistica Sinica 4, 639–650.
Examples
## Not run:
data(breast.17) # the dataset
breast.data <- as.matrix(breast.17) # put data in matrix object
set.seed(1) # initialize the seed at 1 for test purposes
breast.c1 <- dirichlet.c(breast.data, ncycles=4000, M=5)
breast.c2 <- dirichlet.c(breast.data,ncycles=4000, M=1000)
## End(Not run)