cv.bandPPP {bspcov} | R Documentation |
CV for Bayesian Estimation of a Banded Covariance Matrix
Description
Performs leave-one-out cross-validation (LOOCV) to calculate the predictive log-likelihood for a post-processed posterior of a banded covariance matrix and selects the optimal parameters.
Usage
cv.bandPPP(X, kvec, epsvec, prior = list(), nsample = 2000, ncores = 2)
Arguments
X |
a n |
kvec |
a vector of natural numbers specifying the bandwidth of covariance matrix. |
epsvec |
a vector of small positive numbers decreasing to |
prior |
a list giving the prior information.
The list includes the following parameters (with default values in parentheses):
|
nsample |
a scalar value giving the number of the post-processed posterior samples. |
ncores |
a scalar value giving the number of CPU cores. |
Details
The predictive log-likelihood for each k
and \epsilon_n
is estimated as follows:
\sum_{i=1}^n \log S^{-1} \sum_{s=1}^S p(X_i \mid B_k^{(\epsilon_n)}(\Sigma_{i,s})),
where X_i
is the ith observation, \Sigma_{i,s}
is the sth posterior sample based on (X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n)
, and B_k^{(\epsilon_n)}
represents the banding post-processing function.
For more details, see (3) in Lee, Lee and Lee (2023+).
Value
elpd |
a M |
Author(s)
Kwangmin Lee
References
Lee, K., Lee, K., and Lee, J. (2023+), "Post-processes posteriors for banded covariances", Bayesian Analysis, DOI: 10.1214/22-BA1333.
Gelman, A., Hwang, J., and Vehtari, A. (2014). "Understanding predictive information criteria for Bayesian models." Statistics and computing, 24(6), 997-1016.
See Also
bandPPP
Examples
Sigma0 <- diag(1,50)
X <- mvtnorm::rmvnorm(25,sigma = Sigma0)
kvec <- 1:2
epsvec <- c(0.01,0.05)
res <- bspcov::cv.bandPPP(X,kvec,epsvec,nsample=10,ncores=4)
plot(res)