bandPPP {bspcov} | R Documentation |
Bayesian Estimation of a Banded Covariance Matrix
Description
Provides a post-processed posterior for Bayesian inference of a banded covariance matrix.
Usage
bandPPP(X, k, eps, prior = list(), nsample = 2000)
Arguments
X |
a n |
k |
a scalar value (natural number) specifying the bandwidth of covariance matrix. |
eps |
a small positive number decreasing to |
prior |
a list giving the prior information.
The list includes the following parameters (with default values in parentheses):
|
nsample |
a scalar value giving the number of the post-processed posterior samples. |
Details
Lee, Lee, and Lee (2023+) proposed a two-step procedure generating samples from the post-processed posterior for Bayesian inference of a banded covariance matrix:
Initial posterior computing step: Generate random samples from the following initial posterior obtained by using the inverse-Wishart prior
IW_p(B_0, \nu_0)
\Sigma \mid X_1, \ldots, X_n \sim IW_p(B_0 + nS_n, \nu_0 + n),
where
S_n = n^{-1}\sum_{i=1}^{n}X_iX_i^\top
.Post-processing step: Post-process the samples generated from the initial samples
\Sigma_{(i)} := \left\{\begin{array}{ll}B_{k}(\Sigma^{(i)}) + \left[\epsilon_n - \lambda_{\min}\{B_{k}(\Sigma^{(i)})\}\right]I_p, & \mbox{ if } \lambda_{\min}\{B_{k}(\Sigma^{(i)})\} < \epsilon_n, \\ B_{k}(\Sigma^{(i)}), & \mbox{ otherwise }, \end{array}\right.
where \Sigma^{(1)}, \ldots, \Sigma^{(N)}
are the initial posterior samples,
\epsilon_n
is a small positive number decreasing to 0
as n \rightarrow \infty
,
and B_k(B)
denotes the k
-band operation given as
B_{k}(B) = \{b_{ij}I(|i - j| \le k)\} \mbox{ for any } B = (b_{ij}) \in R^{p \times p}.
For more details, see Lee, Lee and Lee (2023+).
Value
Sigma |
a nsample |
p |
dimension of covariance matrix. |
Author(s)
Kwangmin Lee
References
Lee, K., Lee, K., and Lee, J. (2023+), "Post-processes posteriors for banded covariances", Bayesian Analysis, DOI: 10.1214/22-BA1333.
See Also
cv.bandPPP estimate
Examples
n <- 25
p <- 50
Sigma0 <- diag(1, p)
X <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma0)
res <- bspcov::bandPPP(X,2,0.01,nsample=100)