| bslearn {bsnsing} | R Documentation | 
Find the Optimal Boolean Rule for Binary Classification
Description
The function solves a mixed integer program (MIP) to maximize the Gini reduction (opt.model = 'gini') or minimize the number of misclassified cases (opt.model = 'error').
Usage
bslearn(bx, y, control = bscontrol())
Arguments
bx | 
 a data frame with binary (0 and 1) entries.  | 
y | 
 an integer vector with binary entries.  | 
control | 
 an object of class   | 
Value
a list containing the splitting solution.
Examples
x <- auto[, c('mpg', 'cylinders', 'displacement')]
y <- ifelse(auto$origin == 'USA', 1L, 0L)
# binarize x by y = 1
bx <- binarize(x, y, target = 1)
# learn the optimal Boolean rule
bssol <- bslearn(bx, y, bscontrol(opt.solver = 'enum'))
cat(paste("Optimal rule:" , bssol$rules, "\n"))
[Package bsnsing version 1.0.1 Index]