bshazard-package {bshazard} | R Documentation |
Nonparametric Smoothing of the Hazard Function
Description
The function estimates the hazard function non parametrically from a survival object (possibly adjusted for covariates). The smoothed estimate is based on B-splines from the perspective of generalized linear mixed models. Left truncated and right censoring data are allowed.
Details
The DESCRIPTION file:
Package: | bshazard |
Type: | Package |
Title: | Nonparametric Smoothing of the Hazard Function |
Version: | 1.2 |
Date: | 2024-05-10 |
Author: | Paola Rebora,Agus Salim, Marie Reilly |
Maintainer: | Paola Rebora <paola.rebora@unimib.it> |
Depends: | R(>= 3.3.3),splines,survival,Epi |
Description: | The function estimates the hazard function non parametrically from a survival object (possibly adjusted for covariates). The smoothed estimate is based on B-splines from the perspective of generalized linear mixed models. Left truncated and right censoring data are allowed. The package is based on the work in Rebora P (2014) <doi:10.32614/RJ-2014-028>. |
License: | GPL-2 |
RoxygenNote: | 7.3.1 |
NeedsCompilation: | no |
Packaged: | 2024-05-10 11:06:47 UTC; paola.rebora |
Repository: | CRAN |
Date/Publication: | 2024-05-10 10:01:45 UTC |
Index of help topics:
bshazard Nonparametric Smoothing of the Hazard Function bshazard-package Nonparametric Smoothing of the Hazard Function bspois.basic Functions for internal use of bshazard plot.bshazard Plot Method for 'bshazard' print.bshazard Print a short summary of the hazard rate summary.bshazard Summary of hazard curve
Author(s)
Paola Rebora, Agus Salim, Marie Reilly Maintainer: Paola Rebora <paola.rebora@unimib.it>
References
Rebora P, Salim A, Reilly M (2014) bshazard: A Flexible Tool for Nonparametric Smoothing of the Hazard Function.The R Journal Vol. 6/2:114-122.
Lee Y, Nelder JA, Pawitan Y (2006). Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood, volume 106. Chapman & Hall/CRC.
Pawitan Y (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press
Examples
data(cancer,package="survival")
fit<-bshazard(Surv(time, status==2) ~ 1,data=lung)
plot(fit)