bs.plot {bsgof} | R Documentation |
Birnbaum-Saunders Probability Plot
Description
bs.plot
produces a Birnbaum-Saunders probability plot.
Usage
bs.plot(x, plot.it=TRUE, a, col.line="black", lty.line=1,
xlim=NULL, ylim=NULL, main=NULL, sub=NULL, xlab=NULL, ylab="Probability", ...)
Arguments
x |
a numeric vector of data values. Missing values are allowed. |
plot.it |
logical. Should the result be plotted? |
a |
the offset fraction to be used; typically in (0,1). See |
col.line |
the color of the straight line. |
lty.line |
the line type of the straight line. |
xlim |
the x limits of the plot. |
ylim |
the y limits of the plot. |
main |
a main title for the plot, see also |
sub |
a sub title for the plot. |
xlab |
a label for the x axis, defaults to a description of x. |
ylab |
a label for the y axis, defaults to "Probability". |
... |
graphical parameters. |
Details
The Birnbaum-Saunders probability plot is based on the linearization proposed by Chang and Tang (1994).
Value
A list with the following components:
x |
The sorted data |
w |
sqrt(x)*qnorm(p) |
Author(s)
Chanseok Park
References
Chang, D. S and Tang, L. C. (1994). Graphical analysis for Birnbaum-Saunders distribution.
Microelectronics Reliability 34: 17-22.
Birnbaum, Z. W. and Saunders, S. C. (1969). Estimation for a Family of Life Distributions with Applications to Fatigue. J. Appl. Probab. 6(2): 328-347.
See Also
wp.plot
for the Weibull probability plot in package weibullness.
Examples
# Data set from Birnbaum and Saunders (1969).
attach(BSdata)
data = psi21k
bs.plot(data)
# Adding cosmetic lines
bs.plot(data, main="BS probability plot", lty.line=2, pch=3, col.line="red")
ticklabels=c(0.01, seq(0.1,0.9,by=0.1), seq(0.91,0.99,by=0.01) )
qn = quantile(data, probs=ticklabels)
ticksat= qnorm(ticklabels)* sqrt( qn )
hline = qnorm( ticklabels ) * sqrt( qn )
abline( h=hline, col=gray(0.5), lty=3, lwd=0.6 )
abline( v= seq(0, 2500, by=100), col=gray(0.5), lty=3, lwd=0.5 )
abline( h= qnorm(0.5)*sqrt(median(data)), col=gray(0.1), lty=1, lwd=0.6 )
abline( v= median(data), col=gray(0.1), lty=1, lwd=0.6 )