BS {bsgof} | R Documentation |
The Birnbaum-Saunders distribution
Description
Density, distribution function, quantile function and random generation for the Birnbaum-Saunders distribution with alpha (shape) and beta (scale)
Usage
dbs(x, alpha = 1, beta = 1, log = FALSE)
pbs(q, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)
qbs(p, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)
rbs(n, alpha = 1, beta = 1)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
alpha |
shape parameter. |
beta |
scale parameter. |
log , log.p |
logical; if |
lower.tail |
logical; if |
Details
The Birnbaum-Saunders distribution was proposed by Birnbaum and Saunders (1969) and its probability density function and cumulative distribution function are given by
f(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2\alpha^{2}}
\left(\frac{x}{\beta}+\frac{\beta}{x}-2\right) \right]
\frac{x^{-\frac{3}{2}} (x+\beta)}{2\alpha\sqrt{\beta}}
and
F(x) = \Phi \Big[ \frac{1}{\alpha} \Big( \sqrt{\frac{x}{\beta}}-\sqrt{\frac{\beta}{x}} \Big) \Big],
where x>0
, \alpha>0
, and \beta>0
.
Value
dbs
gives the density, pbs
gives the distribution function, qbs
gives the quantile function,
and rbs
generates random deviates.
Author(s)
Chanseok Park
References
Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. J. Appl. Probab. 6(2): 637-652.
Examples
dbs(1.5, alpha=0.5, beta=1.5)
exp( dbs(1.5, alpha=0.5, beta=1.5, log=TRUE) )
pbs(2.5, alpha=0.5, beta=1.5)
1 - pbs(2.5, alpha=0.5,beta=1.5, lower.tail = FALSE, log.p = FALSE)
1 - exp( pbs(2.5, alpha=0.5,beta=1.5, lower.tail = FALSE, log.p = TRUE) )
qbs(0.1, alpha=0.5, beta=1.5)
qbs(0.9, alpha=0.5, beta=1.5, lower.tail = FALSE, log.p = FALSE)
qbs(log(0.1), alpha=0.5, beta=1.5, lower.tail = TRUE, log.p = TRUE)
qbs(log(0.9), alpha=0.5, beta=1.5, lower.tail = FALSE, log.p = TRUE)
rbs(n=10, alpha=0.5, beta=1.5)