predict.bsamdpm {bsamGP} | R Documentation |
Predict method for a bsamdpm object
Description
Computes the predicted values of Bayesian spectral analysis models with Dirichlet process mixture errors.
Usage
## S3 method for class 'bsamdpm'
predict(object, newp, newnp, alpha = 0.05, HPD = TRUE, ...)
Arguments
object |
a |
newp |
an optional data of parametric components with which to predict. If omitted, the fitted values are returned. |
newnp |
an optional data of nonparametric components with which to predict. If omitted, the fitted values are returned. |
alpha |
a numeric scalar in the interval (0,1) giving the |
HPD |
a logical variable indicating whether the |
... |
not used |
Details
None.
Value
A list object of class predict.bsamdpm
containing posterior means and 100(1-\alpha)
% credible intervals.
The output list includes the following objects:
fxobs |
posterior estimates for unknown functions over observation. |
wbeta |
posterior estimates for parametric part. |
yhat |
posterior estimates for fitted values of response. |
See Also
Examples
## Not run:
#####################
# Increasing-convex #
#####################
# Simulate data
set.seed(1)
n <- 200
x <- runif(n)
e <- c(rnorm(n/2, sd = 0.5), rnorm(n/2, sd = 3))
y <- exp(6*x - 3) + e
# Number of cosine basis functions
nbasis <- 50
# Fit the model with default priors and mcmc parameters
fout <- bsardpm(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex')
# Prediction
xnew <- runif(n)
predict(fout, newnp = xnew)
## End(Not run)