predict.blm {bsamGP} | R Documentation |
Predict method for a blm object
Description
Computes predicted values of Bayesian linear models.
Usage
## S3 method for class 'blm'
predict(object, newdata, alpha = 0.05, HPD = TRUE, ...)
Arguments
object |
a |
newdata |
an optional data matrix or vector with which to predict. If omitted, the fitted values are returned. |
alpha |
a numeric scalar in the interval (0,1) giving the |
HPD |
a logical variable indicating whether the |
... |
not used |
Details
None.
Value
A list containing posterior means and 95% credible intervals.
The output list includes the following objects:
wbeta |
posterior estimates for regression function. |
yhat |
posterior estimates for generalised regression function. |
References
Chen, M., Shao, Q. and Ibrahim, J. (2000) Monte Carlo Methods in Bayesian computation. Springer-Verlag New York, Inc.
See Also
Examples
## Not run:
#####################
# Simulated example #
#####################
# Simulate data
set.seed(1)
n <- 100
w <- runif(n)
y <- 3 + 2*w + rnorm(n, sd = 0.8)
# Fit the model with default priors and mcmc parameters
fout <- blr(y ~ w)
# Predict
new <- rnorm(n)
predict(fout, newdata = new)
## End(Not run)