mo {brms} | R Documentation |
Monotonic Predictors in brms Models
Description
Specify a monotonic predictor term in brms. The function does not evaluate its arguments – it exists purely to help set up a model.
Usage
mo(x, id = NA)
Arguments
x |
An integer variable or an ordered factor to be modeled as monotonic. |
id |
Optional character string. All monotonic terms
with the same |
Details
See Bürkner and Charpentier (2020) for the underlying theory. For
detailed documentation of the formula syntax used for monotonic terms,
see help(brmsformula)
as well as vignette("brms_monotonic")
.
References
Bürkner P. C. & Charpentier E. (2020). Modeling Monotonic Effects of Ordinal Predictors in Regression Models. British Journal of Mathematical and Statistical Psychology. doi:10.1111/bmsp.12195
See Also
Examples
## Not run:
# generate some data
income_options <- c("below_20", "20_to_40", "40_to_100", "greater_100")
income <- factor(sample(income_options, 100, TRUE),
levels = income_options, ordered = TRUE)
mean_ls <- c(30, 60, 70, 75)
ls <- mean_ls[income] + rnorm(100, sd = 7)
dat <- data.frame(income, ls)
# fit a simple monotonic model
fit1 <- brm(ls ~ mo(income), data = dat)
summary(fit1)
plot(fit1, N = 6)
plot(conditional_effects(fit1), points = TRUE)
# model interaction with other variables
dat$x <- sample(c("a", "b", "c"), 100, TRUE)
fit2 <- brm(ls ~ mo(income)*x, data = dat)
summary(fit2)
plot(conditional_effects(fit2), points = TRUE)
# ensure conditional monotonicity
fit3 <- brm(ls ~ mo(income, id = "i")*x, data = dat)
summary(fit3)
plot(conditional_effects(fit3), points = TRUE)
## End(Not run)