loo_moment_match.brmsfit {brms} | R Documentation |
Moment matching for efficient approximate leave-one-out cross-validation
Description
Moment matching for efficient approximate leave-one-out cross-validation
(LOO-CV). See loo_moment_match
for more details.
Usage
## S3 method for class 'brmsfit'
loo_moment_match(
x,
loo,
k_threshold = 0.7,
newdata = NULL,
resp = NULL,
check = TRUE,
recompile = FALSE,
...
)
Arguments
x |
An object of class |
loo |
An object of class |
k_threshold |
The Pareto |
newdata |
An optional data.frame for which to evaluate predictions. If
|
resp |
Optional names of response variables. If specified, predictions are performed only for the specified response variables. |
check |
Logical; If |
recompile |
Logical, indicating whether the Stan model should be recompiled. This may be necessary if you are running moment matching on another machine than the one used to fit the model. No recompilation is done by default. |
... |
Further arguments passed to the underlying methods.
Additional arguments initially passed to |
Details
The moment matching algorithm requires draws of all variables
defined in Stan's parameters
block to be saved. Otherwise
loo_moment_match
cannot be computed. Thus, please set
save_pars = save_pars(all = TRUE)
in the call to brm
,
if you are planning to apply loo_moment_match
to your models.
Value
An updated object of class loo
.
References
Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly Adaptive Importance Sampling. Statistics and Computing.
Examples
## Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson(),
save_pars = save_pars(all = TRUE))
# throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
(mmloo1 <- loo_moment_match(fit1, loo = loo1))
## End(Not run)