default_prior.default {brms} | R Documentation |
Default Priors for brms Models
Description
Get information on all parameters (and parameter classes) for which priors may be specified including default priors.
Usage
## Default S3 method:
default_prior(
object,
data,
family = gaussian(),
autocor = NULL,
data2 = NULL,
knots = NULL,
drop_unused_levels = TRUE,
sparse = NULL,
...
)
Arguments
object |
An object of class |
data |
An object of class |
family |
A description of the response distribution and link function to
be used in the model. This can be a family function, a call to a family
function or a character string naming the family. Every family function has
a |
autocor |
(Deprecated) An optional |
data2 |
A named |
knots |
Optional list containing user specified knot values to be used
for basis construction of smoothing terms. See
|
drop_unused_levels |
Should unused factors levels in the data be
dropped? Defaults to |
sparse |
(Deprecated) Logical; indicates whether the population-level
design matrices should be treated as sparse (defaults to |
... |
Other arguments for internal usage only. |
Value
A brmsprior
object. That is, a data.frame with specific
columns including prior
, class
, coef
, and group
and several rows, each providing information on a parameter (or parameter
class) on which priors can be specified. The prior column is empty except
for internal default priors.
See Also
Examples
# get all parameters and parameters classes to define priors on
(prior <- default_prior(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson()))
# define a prior on all population-level effects a once
prior$prior[1] <- "normal(0,10)"
# define a specific prior on the population-level effect of Trt
prior$prior[5] <- "student_t(10, 0, 5)"
# verify that the priors indeed found their way into Stan's model code
stancode(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson(),
prior = prior)