| brmsfamily {brms} | R Documentation |
Special Family Functions for brms Models
Description
Family objects provide a convenient way to specify the details of the models
used by many model fitting functions. The family functions presented here are
for use with brms only and will **not** work with other model
fitting functions such as glm or glmer.
However, the standard family functions as described in
family will work with brms.
You can also specify custom families for use in brms with
the custom_family function.
Usage
brmsfamily(
family,
link = NULL,
link_sigma = "log",
link_shape = "log",
link_nu = "logm1",
link_phi = "log",
link_kappa = "log",
link_beta = "log",
link_zi = "logit",
link_hu = "logit",
link_zoi = "logit",
link_coi = "logit",
link_disc = "log",
link_bs = "log",
link_ndt = "log",
link_bias = "logit",
link_xi = "log1p",
link_alpha = "identity",
link_quantile = "logit",
threshold = "flexible",
refcat = NULL,
bhaz = NULL
)
student(link = "identity", link_sigma = "log", link_nu = "logm1")
bernoulli(link = "logit")
beta_binomial(link = "logit", link_phi = "log")
negbinomial(link = "log", link_shape = "log")
geometric(link = "log")
lognormal(link = "identity", link_sigma = "log")
shifted_lognormal(link = "identity", link_sigma = "log", link_ndt = "log")
skew_normal(link = "identity", link_sigma = "log", link_alpha = "identity")
exponential(link = "log")
weibull(link = "log", link_shape = "log")
frechet(link = "log", link_nu = "logm1")
gen_extreme_value(link = "identity", link_sigma = "log", link_xi = "log1p")
exgaussian(link = "identity", link_sigma = "log", link_beta = "log")
wiener(
link = "identity",
link_bs = "log",
link_ndt = "log",
link_bias = "logit"
)
Beta(link = "logit", link_phi = "log")
dirichlet(link = "logit", link_phi = "log", refcat = NULL)
logistic_normal(link = "identity", link_sigma = "log", refcat = NULL)
von_mises(link = "tan_half", link_kappa = "log")
asym_laplace(link = "identity", link_sigma = "log", link_quantile = "logit")
cox(link = "log", bhaz = NULL)
hurdle_poisson(link = "log", link_hu = "logit")
hurdle_negbinomial(link = "log", link_shape = "log", link_hu = "logit")
hurdle_gamma(link = "log", link_shape = "log", link_hu = "logit")
hurdle_lognormal(link = "identity", link_sigma = "log", link_hu = "logit")
hurdle_cumulative(
link = "logit",
link_hu = "logit",
link_disc = "log",
threshold = "flexible"
)
zero_inflated_beta(link = "logit", link_phi = "log", link_zi = "logit")
zero_one_inflated_beta(
link = "logit",
link_phi = "log",
link_zoi = "logit",
link_coi = "logit"
)
zero_inflated_poisson(link = "log", link_zi = "logit")
zero_inflated_negbinomial(link = "log", link_shape = "log", link_zi = "logit")
zero_inflated_binomial(link = "logit", link_zi = "logit")
zero_inflated_beta_binomial(
link = "logit",
link_phi = "log",
link_zi = "logit"
)
categorical(link = "logit", refcat = NULL)
multinomial(link = "logit", refcat = NULL)
cumulative(link = "logit", link_disc = "log", threshold = "flexible")
sratio(link = "logit", link_disc = "log", threshold = "flexible")
cratio(link = "logit", link_disc = "log", threshold = "flexible")
acat(link = "logit", link_disc = "log", threshold = "flexible")
Arguments
family |
A character string naming the distribution family of the response
variable to be used in the model. Currently, the following families are
supported: |
link |
A specification for the model link function. This can be a name/expression or character string. See the 'Details' section for more information on link functions supported by each family. |
link_sigma |
Link of auxiliary parameter |
link_shape |
Link of auxiliary parameter |
link_nu |
Link of auxiliary parameter |
link_phi |
Link of auxiliary parameter |
link_kappa |
Link of auxiliary parameter |
link_beta |
Link of auxiliary parameter |
link_zi |
Link of auxiliary parameter |
link_hu |
Link of auxiliary parameter |
link_zoi |
Link of auxiliary parameter |
link_coi |
Link of auxiliary parameter |
link_disc |
Link of auxiliary parameter |
link_bs |
Link of auxiliary parameter |
link_ndt |
Link of auxiliary parameter |
link_bias |
Link of auxiliary parameter |
link_xi |
Link of auxiliary parameter |
link_alpha |
Link of auxiliary parameter |
link_quantile |
Link of auxiliary parameter |
threshold |
A character string indicating the type
of thresholds (i.e. intercepts) used in an ordinal model.
|
refcat |
Optional name of the reference response category used in
|
bhaz |
Currently for experimental purposes only. |
Details
Below, we list common use cases for the different families. This list is not ment to be exhaustive.
Family
gaussiancan be used for linear regression.Family
studentcan be used for robust linear regression that is less influenced by outliers.Family
skew_normalcan handle skewed responses in linear regression.Families
poisson,negbinomial, andgeometriccan be used for regression of unbounded count data.Families
bernoulli,binomial, andbeta_binomialcan be used for binary regression (i.e., most commonly logistic regression).Families
categoricalandmultinomialcan be used for multi-logistic regression when there are more than two possible outcomes.Families
cumulative,cratio('continuation ratio'),sratio('stopping ratio'), andacat('adjacent category') leads to ordinal regression.Families
Gamma,weibull,exponential,lognormal,frechet,inverse.gaussian, andcox(Cox proportional hazards model) can be used (among others) for time-to-event regression also known as survival regression.Families
weibull,frechet, andgen_extreme_value('generalized extreme value') allow for modeling extremes.Families
beta,dirichlet, andlogistic_normalcan be used to model responses representing rates or probabilities.Family
asym_laplaceallows for quantile regression when fixing the auxiliaryquantileparameter to the quantile of interest.Family
exgaussian('exponentially modified Gaussian') andshifted_lognormalare especially suited to model reaction times.Family
wienerprovides an implementation of the Wiener diffusion model. For this family, the main formula predicts the drift parameter 'delta' and all other parameters are modeled as auxiliary parameters (seebrmsformulafor details).Families
hurdle_poisson,hurdle_negbinomial,hurdle_gamma,hurdle_lognormal,zero_inflated_poisson,zero_inflated_negbinomial,zero_inflated_binomial,zero_inflated_beta_binomial,zero_inflated_beta,zero_one_inflated_beta, andhurdle_cumulativeallow to estimate zero-inflated and hurdle models. These models can be very helpful when there are many zeros in the data (or ones in case of one-inflated models) that cannot be explained by the primary distribution of the response.
Below, we list all possible links for each family. The first link mentioned for each family is the default.
Families
gaussian,student,skew_normal,exgaussian,asym_laplace, andgen_extreme_valuesupport the links (as names)identity,log,inverse, andsoftplus.Families
poisson,negbinomial,geometric,zero_inflated_poisson,zero_inflated_negbinomial,hurdle_poisson, andhurdle_negbinomialsupportlog,identity,sqrt, andsoftplus.Families
binomial,bernoulli,beta_binomial,zero_inflated_binomial,zero_inflated_beta_binomial,Beta,zero_inflated_beta, andzero_one_inflated_betasupportlogit,probit,probit_approx,cloglog,cauchit,identity, andlog.Families
cumulative,cratio,sratio,acat, andhurdle_cumulativesupportlogit,probit,probit_approx,cloglog, andcauchit.Families
categorical,multinomial, anddirichletsupportlogit.Families
Gamma,weibull,exponential,frechet, andhurdle_gammasupportlog,identity,inverse, andsoftplus.Families
lognormalandhurdle_lognormalsupportidentityandinverse.Family
logistic_normalsupportsidentity.Family
inverse.gaussiansupports1/mu^2,inverse,identity,log, andsoftplus.Family
von_misessupportstan_halfandidentity.Family
coxsupportslog,identity, andsoftplusfor the proportional hazards parameter.Family
wienersupportsidentity,log, andsoftplusfor the main parameter which represents the drift rate.
Please note that when calling the Gamma family
function of the stats package, the default link will be
inverse instead of log although the latter is the default in
brms. Also, when using the family functions gaussian,
binomial, poisson, and Gamma of the stats
package (see family), special link functions
such as softplus or cauchit won't work. In this case, you
have to use brmsfamily to specify the family with corresponding link
function.
See Also
Examples
# create a family object
(fam1 <- student("log"))
# alternatively use the brmsfamily function
(fam2 <- brmsfamily("student", "log"))
# both leads to the same object
identical(fam1, fam2)