brm_simulate_simple {brms.mmrm} | R Documentation |
Simple MMRM simulation.
Description
Simple function to simulate a dataset from a simple specialized MMRM.
Usage
brm_simulate_simple(
n_group = 2L,
n_patient = 100L,
n_time = 4L,
hyper_beta = 1,
hyper_tau = 0.1,
hyper_lambda = 1
)
Arguments
n_group |
Positive integer of length 1, number of treatment groups. |
n_patient |
Positive integer of length 1, number of patients per treatment group. |
n_time |
Positive integer of length 1, number of discrete time points (e.g. scheduled study visits) per patient. |
hyper_beta |
Positive numeric of length 1, hyperparameter.
Prior standard deviation of the fixed effect parameters |
hyper_tau |
Positive numeric of length 1, hyperparameter.
Prior standard deviation parameter of the residual log standard
deviation parameters |
hyper_lambda |
Positive numeric of length 1, hyperparameter. Prior shape parameter of the LKJ correlation matrix of the residuals among discrete time points. |
Details
Refer to the methods vignette for a full model specification.
The brm_simulate_simple()
function simulates a dataset from a
simple pre-defined MMRM. It assumes a cell means structure for fixed
effects, which means there is one fixed effect scalar parameter
(element of vector beta
) for each unique combination of levels of
treatment group and discrete time point.
The elements of beta
have independent univariate normal
priors with mean 0 and standard deviation hyper_beta
.
The residual log standard deviation parameters (elements of vector tau
)
have normal priors with mean 0 and standard deviation hyper_tau
.
The residual correlation matrix parameter lambda
has an LKJ correlation
prior with shape parameter hyper_lambda
.
Value
A list of three objects:
-
data
: A tidy dataset with one row per patient per discrete time point and columns for the outcome and ID variables. -
model_matrix
: A matrix with one row per row ofdata
and columns that represent levels of the covariates. -
parameters
: A named list of parameter draws sampled from the prior:-
beta
: numeric vector of fixed effects. -
tau
: numeric vector of residual log standard parameters for each time point. -
sigma
: numeric vector of residual standard parameters for each time point.sigma
is equal toexp(tau)
. -
lambda
: correlation matrix of the residuals among the time points within each patient. -
covariance
: covariance matrix of the residuals among the time points within each patient.covariance
is equal todiag(sigma) %*% lambda %*% diag(sigma)
.
-
See Also
Other simulation:
brm_simulate_categorical()
,
brm_simulate_continuous()
,
brm_simulate_outline()
,
brm_simulate_prior()
Examples
set.seed(0L)
simulation <- brm_simulate_simple()
simulation$data