il {brlrmr} | R Documentation |
il
Description
This provides the estimates using IL method as described in the reference.
Usage
il(formula, data, parameter = NULL, family = binomial, alpha = 0.05,
interaction = FALSE, k = NULL, na.action)
Arguments
formula |
as in |
data |
as in |
parameter |
The starting values of the parameters as ( |
family |
as in |
alpha |
This is used for upper 100(1 - alpha)% point of standard Normal distribution. The default is 1.96. |
interaction |
TRUE or FALSE, whether to consider interaction in the missing data model. Currenly only one intercation between response and covariates is supported. FALSE by default. |
k |
Which covariate has interaction with response. Takes integer values. User must assign a value if interaction = TRUE. |
na.action |
as in |
Value
n |
number of observations. |
nmissing |
the number of missing observations. |
missing.proportion |
proportion of missing observations. |
beta.hat |
parameter estimate of logsitic regression of y on x using IL method. |
beta.se.hat |
standard error using IL method. |
z.value |
Wald Z value using IL method. |
p.value |
p value using IL method. |
significance.beta |
is indicator output whether regressors are significant using IL method, 1 if significant and 0 if not significant. |
LCL |
Lower Confidence Limits of 100(1 - alpha)% Confidence Intervals. |
UCL |
Upper Confidence Limits of 100(1 - alpha)% Confidence Intervals. |
alpha.hat |
parameter estimate due to missing model using IL. |
alpha.se.hat |
standard error of the them. |
z.value.alpha |
Wald Z value for them. |
p.value.alpha |
p values for them. |
sep |
separation indicator = 1 if separation, = 0 otherwise |
References
Ibrahim, J. G. and Lipsitz, S. R. (1996). Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable. Biometrics, 52:1071–1078.
Examples
## Not run:
#############################################
########### Simulated Example ###############
#############################################
data(simulated.data) # load simulated data
# parameter definition
beta0 <- 1
beta1 <- 1
beta2 <- 1
beta3 <- 1
beta4 <- 1
# parameter definition for missing indicator
alpha0 <- -1.1
alpha1 <- -1
alpha2 <- 1
alpha3 <- 1
alpha4 <- 1
alpha5 <- -1
parameter <- c(beta0, beta1, beta2, beta3, beta4,
alpha0, alpha1, alpha2, alpha3, alpha4, alpha5)
il(y ~ x1 + x2 + x3 + x4, data = simulated.data, parameter,
family = binomial(link = "logit"), na.action = na.pass)
## End(Not run)
## Not run:
#############################################
##### Real data example with separation #####
#############################################
data(nhanes) # load nhanes data
il(hyp ~ age2 + age3, data = nhanes, family = binomial(link = "logit"), na.action = na.pass)
# IL method encounters separation
## End(Not run)