| fil {brlrmr} | R Documentation | 
fil
Description
This provides the estimates using IL method and FIL method as described in the reference.
Usage
fil(formula, data, parameter = NULL, family = binomial, alpha = 0.05,
interaction = FALSE, k = NULL, na.action)
Arguments
| formula | as in  | 
| data | as in  | 
| parameter | The starting values of the parameters as ( | 
| family | as in  | 
| alpha | This is used for upper 100(1 - alpha)% point of standard Normal distribution. The default is 1.96. | 
| interaction | TRUE or FALSE, whether to consider interaction in the missing data model. Currenly only one intercation between response and covariates is supported. FALSE by default. | 
| k | Which covariate has interaction with response. Takes integer values. User must assign a value if interaction = TRUE. | 
| na.action | as in  | 
Value
| n | number of observations. | 
| nmissing | the number of missing observations. | 
| missing.proportion | proportion of missing observations. | 
| beta.hat | parameter estimate of logistic regression of y on x using FIL method. | 
| beta.se.hat | standard error using FIL method. | 
| z.value | Wald Z value using FIL method. | 
| p.value | p value using FIL method. | 
| significance.beta.firth | indicator output whether regressors are significant using FIL method, 1 if significant and 0 if not significant. | 
| LCL | Lower Confidence Limits of 100(1 - alpha)% Confidence Intervals. | 
| UCL | Upper Confidence Limits of 100(1 - alpha)% Confidence Intervals. | 
| alpha.hat | parameter estimate due to missing model using FIL. | 
| alpha.se.hat | standard error of the them. | 
| z.value.alpha | Wald Z value for them. | 
| p.value.alpha | p values for them. | 
References
Bias Reduction in Logistic Regression with Missing Responses when the Missing Data Mechanism is Nonignorable.
Examples
## Not run: 
#############################################
########### Simulated Example ###############
#############################################
data(simulated.data)  # load simulated data
# parameter definition
beta0 <- 1
beta1 <- 1
beta2 <- 1
beta3 <- 1
beta4 <- 1
# parameter definition for missing indicator
alpha0 <- -1.1
alpha1 <- -1
alpha2 <- 1
alpha3 <- 1
alpha4 <- 1
alpha5 <- -1
parameter <- c(beta0, beta1, beta2, beta3, beta4,
               alpha0, alpha1, alpha2, alpha3, alpha4, alpha5)
fil(y ~ x1 + x2 + x3 + x4, data = simulated.data, parameter,
family = binomial(link = "logit"), na.action = na.pass)
## End(Not run)
#############################################
##### Real data example with separation #####
#############################################
data(nhanes)  # load nhanes data
fil(hyp ~ age2 + age3, data = nhanes, family = binomial(link = "logit"), na.action = na.pass)
data(incontinence)  # load nhanes data
fil(y ~ x1 + x2 + x3, data = incontinence, family = binomial(link = "logit"), na.action = na.pass)