broken {breakDown} | R Documentation |
Generic Function for Breaking Down of Model Predictions
Description
The broken
function is a generic function for decomposition of model predictions.
For linear models please use broken.lm, for generic linear models please use broken.glm.
For all other models please use the model agnostic version broken.default.
Please note, that some of these functions have additional parameters.
Usage
broken(model, new_observation, ...)
Arguments
model |
a model |
new_observation |
a new observation with columns that corresponds to variables used in the model |
... |
other parameters |
Value
an object of the broken class
Examples
## Not run:
library("breakDown")
library("randomForest")
library("ggplot2")
set.seed(1313)
model <- randomForest(factor(left)~., data = HR_data, family = "binomial", maxnodes = 5)
predict.function <- function(model, new_observation)
predict(model, new_observation, type="prob")[,2]
predict.function(model, HR_data[11,-7])
explain_1 <- broken(model, HR_data[11,-7], data = HR_data[,-7],
predict.function = predict.function, direction = "down")
explain_1
plot(explain_1) + ggtitle("breakDown plot (direction=down) for randomForest model")
explain_2 <- broken(model, HR_data[11,-7], data = HR_data[,-7],
predict.function = predict.function, direction = "down", keep_distributions = TRUE)
plot(explain_2, plot_distributions = TRUE) +
ggtitle("breakDown distributions (direction=down) for randomForest model")
explain_3 <- broken(model, HR_data[11,-7], data = HR_data[,-7],
predict.function = predict.function, direction = "up", keep_distributions = TRUE)
plot(explain_3, plot_distributions = TRUE) +
ggtitle("breakDown distributions (direction=up) for randomForest model")
## End(Not run)
[Package breakDown version 0.2.2 Index]