findBestBRAID {braidrm} | R Documentation |
Select Best Fitting BRAID Surface Model
Description
Fits several BRAID surface models to the given data, and selects the most parsimonious model using the Akaike information criterion.
Usage
## Default S3 method:
findBestBRAID(model, data, defaults, startparv=NULL, llims=NULL,
ulims=NULL, itype=1, getCIs=TRUE, crossval=TRUE, ...)
## S3 method for class 'formula'
findBestBRAID(model, data, ...)
Arguments
model |
a two-column array containing concentrations of Drug 1 and Drug 2 in each dose pair, or a symbolic formula (e.g.
|
data |
if |
defaults |
two-element vector specifying the default initial and maximal effects for the response surface. These values will be used in several of the models that are tried (see Details below). |
startparv |
an optional parameter specifying starting parameter values for the optimization |
llims |
a ten-element vector of lower limits on parameters being fit. Any parameters that do not require a limit can
have a value of |
ulims |
a vector of upper limits on parameters being fit. Follows same behavior as |
itype |
an integer that specifies the type of interaction(s) that is assumed in the models. The default is 1, which
assumes that the interaction parameter |
getCIs |
determines if confidence intervals will be calculated for all response surface parameters being fit. Parameters are fit using a bootstrapping approach which resamples residuals and refits the new data. |
crossval |
if |
... |
Not used |
Details
Because experiments do not reliably capture the full range of responses that a combination can produce, estimation of the initial and maximal effect parameters for a BRAID surface can be highly unstable. This function fits at least 10 distinct BRAID surface models to the given data, and selects the model which best balances simplicity with goodness of fit. For each interaction type (see below), the following 10 models are fit:
The initial effect parameter
E_0
varies freely, and the two maximal effect parametersE_{f,A}
andE_{f,B}
vary freely independently of one another.The initial effect parameter
E_0
is fixed at the default value, and the two maximal effect parametersE_{f,A}
andE_{f,B}
vary freely independently of one another.The initial effect parameter
E_0
the maximal effect parameterE_{f,A}
vary freely, and the maximal effect parameterE_{f,B}
is fixed at the default value.The initial effect parameter
E_0
the maximal effect parameterE_{f,B}
vary freely, and the maximal effect parameterE_{f,A}
is fixed at the default value.The initial effect parameter
E_0
varies freely, and the two maximal effect parametersE_{f,A}
andE_{f,B}
are constrained to vary as a single parameterE_f
.The initial effect parameter
E_0
varies freely, and the two maximal effect parametersE_{f,A}
andE_{f,B}
are fixed at the default value.The initial effect parameter
E_0
the two maximal effect parameterE_{f,B}
are fixed at the default values, and the maximal effect parameterE_{f,A}
varies freely.The initial effect parameter
E_0
the two maximal effect parameterE_{f,A}
are fixed at the default values, and the maximal effect parameterE_{f,B}
varies freely.The initial effect parameter
E_0
is fixed at the default value,, and the two maximal effect parametersE_{f,A}
andE_{f,B}
are constrained to vary as a single parameterE_f
.The initial effect parameter
E_0
and the two maximal effect parametersE_{f,A}
andE_{f,B}
are all fixed at the default values.
In all models, the potencies of the two drugs (represented by {ID}_{M,A}
and {ID}_{M,B}
) and the Hill
slopes of both drugs (represented by n_a
and n_b
) vary freely. Which of the interaction parameters
\kappa
and \delta
varies depends on the parameter itype
, as follows:
-
itype = 1
:\kappa
varies freely in all models;\delta
is fixed at 1 (10 models total). -
itype = 2
:\delta
varies freely in all models;\kappa
is fixed at 0 (10 models total). -
itype = 3
: Either\kappa
or\delta
(but not both) vary freely in all models (20 models total). -
itype = 4
: Either\kappa
or\delta
or both vary freely in all models (30 models total). -
itype = 5
:\kappa
is fixed at 0 and\delta
is fixed at 1 in all models (10 models total).
Value
An object of the class 'braidrm', with elements as described in braidrm
.
Author(s)
Nathaniel R. Twarog
See Also
braidrm
, getBRAIDbootstrap
, runBRAIDanalysis
Examples
data(es8olatmz)
## Not run: summary(findBestBRAID(cbind(es8olatmz$conc1,es8olatmz$conc2),
es8olatmz$act,defaults=c(0,-2.7)))
## End(Not run)
## Not run: summary(findBestBRAID(act~conc1+conc2,es8olatmz,defaults=c(0,-2.7),itype=2))
summary(findBestBRAID(act~conc1+conc2,es8olatmz,defaults=c(0,-4),getCIs=FALSE))