evalBRAIDrsm {braidrm} | R Documentation |
Calculate BRAID Surface Values
Description
Calculates the value of the Bivariate Response to Additive Interacting Doses (BRAID) surface model for the given concentration pairs.
Usage
evalBRAIDrsm(DA, DB, parv)
Arguments
DA |
vector of concentrations of drug A |
DB |
vector of concentrations of drug B |
parv |
ten-element vector specifying the full set of parameters for the BRAID surface (see Details below) |
Details
The full ten-parameter BRAID model, which we refer to as the extended BRAID or eBRAID model is defined as:
The parameters of this equation must satisfy ,
,
,
,
,
, and
. With this
definition, the ten-element parameter vector is [
,
,
,
,
,
,
,
,
,
]. The simpler standard BRAID
model, as described in Twarog et al. is obtained by setting
equal to 1 and setting
such that
is equal to the maximum of
and
. Assuming that
this sets
equal to
, this causes the equation for
to simplify to
Value
A vector of response values corresponding to the pairs of concentrations in DA
and DB
Author(s)
Nathaniel R. Twarog
See Also
Examples
conc1 <- rep(seq(0,3*10^-6,length=50),each=50)
conc2 <- rep(seq(0,3*10^-6,length=50),times=50)
# Additive surface
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1,0,0,100,100,100))
# A BRAID additive surface is not a Loewe additive surface
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1,3,1,0,0,100,100,100))
# BRAID antagonism
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1,-1,0,100,100,100))
# delta-BRAID synergy
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1.75,0,0,100,100,100))
# Differing final effects
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1,0,0,75,100,100))