evalBRAIDrsm {braidrm} | R Documentation |
Calculate BRAID Surface Values
Description
Calculates the value of the Bivariate Response to Additive Interacting Doses (BRAID) surface model for the given concentration pairs.
Usage
evalBRAIDrsm(DA, DB, parv)
Arguments
DA |
vector of concentrations of drug A |
DB |
vector of concentrations of drug B |
parv |
ten-element vector specifying the full set of parameters for the BRAID surface (see Details below) |
Details
The full ten-parameter BRAID model, which we refer to as the extended BRAID or eBRAID model is defined as:
E(D_A,D_B) = E_0 + \frac{E_f-E_0}{1+{{\tilde{D}}_{AB}}^{-\delta\sqrt{n_a n_b}}}
{\tilde{D}}_{AB} = {{\tilde{D}}_A}^\frac{1}{\delta\sqrt{n_a n_b}}+{{\tilde{D}}_B}^\frac{1}{\delta\sqrt{n_a n_b}}
+\kappa\sqrt{{{\tilde{D}}_A}^\frac{1}{\delta\sqrt{n_a n_b}}
{{\tilde{D}}_B}^\frac{1}{\delta\sqrt{n_a n_b}}}
{\tilde{D}}_A = \frac{\left(\frac{E_{f,A}-E_0}{E_f-E_0}\right)\left(\frac{D_A}{{ID}_{M,A}}\right)^{n_a}}
{1+\left(1-\frac{E_{f,A}-E_0}{E_f-E_0}\right)\left(\frac{D_A}{{ID}_{M,A}}\right)^{n_a}}
{\tilde{D}}_B = \frac{\left(\frac{E_{f,B}-E_0}{E_f-E_0}\right)\left(\frac{D_B}{{ID}_{M,B}}\right)^{n_b}}
{1+\left(1-\frac{E_{f,B}-E_0}{E_f-E_0}\right)\left(\frac{D_B}{{ID}_{M,B}}\right)^{n_b}}
The parameters of this equation must satisfy n_a>0
, n_b>0
, \delta>0
, \kappa> -2
,
sign(E_f-E_0)=sign(E_{f,A}-E_0)=sign(E_{f,B}-E_0)
,
|E_f-E_0|\geq|E_{f,A}-E_0|
, and |E_f-E_0|\geq|E_{f,B}-E_0|
. With this
definition, the ten-element parameter vector is [{ID}_{M,A}
, {ID}_{M,B}
, n_a
, n_b
,
\delta
, \kappa
, E_0
, E_{f,A}
, E_{f,B}
, E_f
]. The simpler standard BRAID
model, as described in Twarog et al. is obtained by setting \delta
equal to 1 and setting E_f
such that
|E_f-E_0|
is equal to the maximum of |E_{f,A}-E_0|
and |E_{f,B}-E_0|
. Assuming that
this sets E_f
equal to E_{f,A}
, this causes the equation for {\tilde{D}}_A
to simplify to
{\tilde{D}}_A = \left(\frac{D_A}{{ID}_{M,A}}\right)^{n_a}
Value
A vector of response values corresponding to the pairs of concentrations in DA
and DB
Author(s)
Nathaniel R. Twarog
See Also
Examples
conc1 <- rep(seq(0,3*10^-6,length=50),each=50)
conc2 <- rep(seq(0,3*10^-6,length=50),times=50)
# Additive surface
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1,0,0,100,100,100))
# A BRAID additive surface is not a Loewe additive surface
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1,3,1,0,0,100,100,100))
# BRAID antagonism
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1,-1,0,100,100,100))
# delta-BRAID synergy
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1.75,0,0,100,100,100))
# Differing final effects
act <- evalBRAIDrsm(conc1,conc2,parv=c(10^-6,10^-6,1.5,1.5,1,0,0,75,100,100))